{"title":"关于伽罗瓦同调、可定义性和微分代数群的更多信息","authors":"OMAR LEÓN SÁNCHEZ, DAVID MERETZKY, ANAND PILLAY","doi":"10.1017/jsl.2024.25","DOIUrl":null,"url":null,"abstract":"<p>As a continuation of the work of the third author in [5], we make further observations on the features of Galois cohomology in the general model theoretic context. We make explicit the connection between forms of definable groups and first cohomology sets with coefficients in a suitable automorphism group. We then use a method of twisting cohomology (inspired by Serre’s algebraic twisting) to describe arbitrary fibres in cohomology sequences—yielding a useful “finiteness” result on cohomology sets.</p><p>Applied to the special case of differential fields and Kolchin’s constrained cohomology, we complete results from [3] by proving that the first constrained cohomology set of a differential algebraic group over a bounded, differentially large, field is countable.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MORE ON GALOIS COHOMOLOGY, DEFINABILITY, AND DIFFERENTIAL ALGEBRAIC GROUPS\",\"authors\":\"OMAR LEÓN SÁNCHEZ, DAVID MERETZKY, ANAND PILLAY\",\"doi\":\"10.1017/jsl.2024.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a continuation of the work of the third author in [5], we make further observations on the features of Galois cohomology in the general model theoretic context. We make explicit the connection between forms of definable groups and first cohomology sets with coefficients in a suitable automorphism group. We then use a method of twisting cohomology (inspired by Serre’s algebraic twisting) to describe arbitrary fibres in cohomology sequences—yielding a useful “finiteness” result on cohomology sets.</p><p>Applied to the special case of differential fields and Kolchin’s constrained cohomology, we complete results from [3] by proving that the first constrained cohomology set of a differential algebraic group over a bounded, differentially large, field is countable.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2024.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2024.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MORE ON GALOIS COHOMOLOGY, DEFINABILITY, AND DIFFERENTIAL ALGEBRAIC GROUPS
As a continuation of the work of the third author in [5], we make further observations on the features of Galois cohomology in the general model theoretic context. We make explicit the connection between forms of definable groups and first cohomology sets with coefficients in a suitable automorphism group. We then use a method of twisting cohomology (inspired by Serre’s algebraic twisting) to describe arbitrary fibres in cohomology sequences—yielding a useful “finiteness” result on cohomology sets.
Applied to the special case of differential fields and Kolchin’s constrained cohomology, we complete results from [3] by proving that the first constrained cohomology set of a differential algebraic group over a bounded, differentially large, field is countable.