马哈拉诺比斯平衡:近似协变量平衡的多变量视角

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Yimin Dai, Ying Yan
{"title":"马哈拉诺比斯平衡:近似协变量平衡的多变量视角","authors":"Yimin Dai, Ying Yan","doi":"10.1111/sjos.12721","DOIUrl":null,"url":null,"abstract":"In the past decade, various exact balancing‐based weighting methods were introduced to the causal inference literature. It eliminates covariate imbalance by imposing balancing constraints in a certain optimization problem, which can nevertheless be infeasible when there is bad overlap between the covariate distributions in the treated and control groups or when the covariates are high dimensional. Recently, approximate balancing was proposed as an alternative balancing framework. It resolves the feasibility issue by using inequality moment constraints instead. However, it can be difficult to select the threshold parameters. Moreover, moment constraints may not fully capture the discrepancy of covariate distributions. In this paper, we propose Mahalanobis balancing to approximately balance covariate distributions from a multivariate perspective. We use a quadratic constraint to control overall imbalance with a single threshold parameter, which can be tuned by a simple selection procedure. We show that the dual problem of Mahalanobis balancing is an norm‐based regularized regression problem, and establish interesting connection to propensity score models. We derive asymptotic properties, discuss the high‐dimensional scenario, and make extensive numerical comparisons with existing balancing methods.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mahalanobis balancing: A multivariate perspective on approximate covariate balancing\",\"authors\":\"Yimin Dai, Ying Yan\",\"doi\":\"10.1111/sjos.12721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, various exact balancing‐based weighting methods were introduced to the causal inference literature. It eliminates covariate imbalance by imposing balancing constraints in a certain optimization problem, which can nevertheless be infeasible when there is bad overlap between the covariate distributions in the treated and control groups or when the covariates are high dimensional. Recently, approximate balancing was proposed as an alternative balancing framework. It resolves the feasibility issue by using inequality moment constraints instead. However, it can be difficult to select the threshold parameters. Moreover, moment constraints may not fully capture the discrepancy of covariate distributions. In this paper, we propose Mahalanobis balancing to approximately balance covariate distributions from a multivariate perspective. We use a quadratic constraint to control overall imbalance with a single threshold parameter, which can be tuned by a simple selection procedure. We show that the dual problem of Mahalanobis balancing is an norm‐based regularized regression problem, and establish interesting connection to propensity score models. We derive asymptotic properties, discuss the high‐dimensional scenario, and make extensive numerical comparisons with existing balancing methods.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12721\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12721","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,各种基于精确平衡的加权方法被引入因果推理文献。这种方法通过在某个优化问题中施加平衡约束来消除协变量的不平衡,但当治疗组和对照组的协变量分布存在严重重叠或协变量维度较高时,这种方法可能并不可行。最近,有人提出了近似平衡作为另一种平衡框架。它通过使用不等矩约束来解决可行性问题。然而,选择阈值参数可能比较困难。此外,矩约束可能无法完全捕捉协变量分布的差异。在本文中,我们提出了马哈拉诺比斯平衡法,从多变量的角度近似平衡协变量分布。我们使用二次约束来控制整体不平衡,只需一个阈值参数,该参数可通过简单的选择程序进行调整。我们证明了 Mahalanobis 平衡的对偶问题是一个基于规范的正则化回归问题,并与倾向评分模型建立了有趣的联系。我们推导了渐近特性,讨论了高维情况,并与现有的平衡方法进行了广泛的数值比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mahalanobis balancing: A multivariate perspective on approximate covariate balancing
In the past decade, various exact balancing‐based weighting methods were introduced to the causal inference literature. It eliminates covariate imbalance by imposing balancing constraints in a certain optimization problem, which can nevertheless be infeasible when there is bad overlap between the covariate distributions in the treated and control groups or when the covariates are high dimensional. Recently, approximate balancing was proposed as an alternative balancing framework. It resolves the feasibility issue by using inequality moment constraints instead. However, it can be difficult to select the threshold parameters. Moreover, moment constraints may not fully capture the discrepancy of covariate distributions. In this paper, we propose Mahalanobis balancing to approximately balance covariate distributions from a multivariate perspective. We use a quadratic constraint to control overall imbalance with a single threshold parameter, which can be tuned by a simple selection procedure. We show that the dual problem of Mahalanobis balancing is an norm‐based regularized regression problem, and establish interesting connection to propensity score models. We derive asymptotic properties, discuss the high‐dimensional scenario, and make extensive numerical comparisons with existing balancing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信