对于具有有界系数的谢拉利-亚当斯算法来说,克利克平均是困难的

Susanna F. de Rezende, Aaron Potechin, Kilian Risse
{"title":"对于具有有界系数的谢拉利-亚当斯算法来说,克利克平均是困难的","authors":"Susanna F. de Rezende, Aaron Potechin, Kilian Risse","doi":"arxiv-2404.16722","DOIUrl":null,"url":null,"abstract":"We prove that Sherali-Adams with polynomially bounded coefficients requires\nproofs of size $n^{\\Omega(d)}$ to rule out the existence of an\n$n^{\\Theta(1)}$-clique in Erd\\H{o}s-R\\'{e}nyi random graphs whose maximum\nclique is of size $d\\leq 2\\log n$. This lower bound is tight up to the\nmultiplicative constant in the exponent. We obtain this result by introducing a\ntechnique inspired by pseudo-calibration which may be of independent interest.\nThe technique involves defining a measure on monomials that precisely captures\nthe contribution of a monomial to a refutation. This measure intuitively\ncaptures progress and should have further applications in proof complexity.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clique Is Hard on Average for Sherali-Adams with Bounded Coefficients\",\"authors\":\"Susanna F. de Rezende, Aaron Potechin, Kilian Risse\",\"doi\":\"arxiv-2404.16722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that Sherali-Adams with polynomially bounded coefficients requires\\nproofs of size $n^{\\\\Omega(d)}$ to rule out the existence of an\\n$n^{\\\\Theta(1)}$-clique in Erd\\\\H{o}s-R\\\\'{e}nyi random graphs whose maximum\\nclique is of size $d\\\\leq 2\\\\log n$. This lower bound is tight up to the\\nmultiplicative constant in the exponent. We obtain this result by introducing a\\ntechnique inspired by pseudo-calibration which may be of independent interest.\\nThe technique involves defining a measure on monomials that precisely captures\\nthe contribution of a monomial to a refutation. This measure intuitively\\ncaptures progress and should have further applications in proof complexity.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.16722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.16722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,具有多项式有界系数的 Sherali-Adams需要大小为 $n^{\Omega(d)}$ 的证明来排除 Erd\H{o}s-R\'{e}nyi 随机图中存在一个$n^\{Theta(1)}$clique,其最大clique的大小为 $d\leq 2\log n$。这个下界在指数的乘法常数以内都很紧。我们通过引入一种受伪校准启发的技术来获得这一结果,这种技术可能会引起人们的兴趣。该技术涉及定义一种关于单项式的度量,以精确捕捉单项式对反驳的贡献。这个度量直观地捕捉了进展,应该在证明复杂性方面有进一步的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clique Is Hard on Average for Sherali-Adams with Bounded Coefficients
We prove that Sherali-Adams with polynomially bounded coefficients requires proofs of size $n^{\Omega(d)}$ to rule out the existence of an $n^{\Theta(1)}$-clique in Erd\H{o}s-R\'{e}nyi random graphs whose maximum clique is of size $d\leq 2\log n$. This lower bound is tight up to the multiplicative constant in the exponent. We obtain this result by introducing a technique inspired by pseudo-calibration which may be of independent interest. The technique involves defining a measure on monomials that precisely captures the contribution of a monomial to a refutation. This measure intuitively captures progress and should have further applications in proof complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信