{"title":"基于 Ge2Sb2Te5 相变超材料的可调反射散射角控制数值建模","authors":"Jianfeng Xu, Lizhen Xu, Fuhai Liu, Xin Huang, Bo Fang, Xufeng Jing","doi":"10.3103/S1541308X24700055","DOIUrl":null,"url":null,"abstract":"<p>To reduce the ohmic loss of the encoding metasurface and achieve continuous control of the scattering angle larger than 70°, we numerically study all dielectric reflective metasurface in the mid-infrared waveband. Free control of the deflection angle of the far-field scattered beam is achieved. The unit structure designed consists of the Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> phase change material and the substrate. The phase difference between each two-unit structures is 90° and has high reflectivity in the working band. We can arrange the four units to construct metasurfaces with different coding sequences and perform Fourier convolution operations on the metasurfaces with different coding sequences to obtain flexible control of the reflected beam. The reflection characteristics of the coding sequence in the crystalline and amorphous states of the Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> phase change material are demonstrated. The abnormal reflection angle phenomenon of the simulated structure was theoretically analyzed.</p>","PeriodicalId":732,"journal":{"name":"Physics of Wave Phenomena","volume":"32 2","pages":"105 - 116"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modeling of Tunable Reflection Scattering Angle Control Based on Ge2Sb2Te5 Phase Change Metamaterials\",\"authors\":\"Jianfeng Xu, Lizhen Xu, Fuhai Liu, Xin Huang, Bo Fang, Xufeng Jing\",\"doi\":\"10.3103/S1541308X24700055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To reduce the ohmic loss of the encoding metasurface and achieve continuous control of the scattering angle larger than 70°, we numerically study all dielectric reflective metasurface in the mid-infrared waveband. Free control of the deflection angle of the far-field scattered beam is achieved. The unit structure designed consists of the Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> phase change material and the substrate. The phase difference between each two-unit structures is 90° and has high reflectivity in the working band. We can arrange the four units to construct metasurfaces with different coding sequences and perform Fourier convolution operations on the metasurfaces with different coding sequences to obtain flexible control of the reflected beam. The reflection characteristics of the coding sequence in the crystalline and amorphous states of the Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> phase change material are demonstrated. The abnormal reflection angle phenomenon of the simulated structure was theoretically analyzed.</p>\",\"PeriodicalId\":732,\"journal\":{\"name\":\"Physics of Wave Phenomena\",\"volume\":\"32 2\",\"pages\":\"105 - 116\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Wave Phenomena\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1541308X24700055\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Phenomena","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S1541308X24700055","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical Modeling of Tunable Reflection Scattering Angle Control Based on Ge2Sb2Te5 Phase Change Metamaterials
To reduce the ohmic loss of the encoding metasurface and achieve continuous control of the scattering angle larger than 70°, we numerically study all dielectric reflective metasurface in the mid-infrared waveband. Free control of the deflection angle of the far-field scattered beam is achieved. The unit structure designed consists of the Ge2Sb2Te5 phase change material and the substrate. The phase difference between each two-unit structures is 90° and has high reflectivity in the working band. We can arrange the four units to construct metasurfaces with different coding sequences and perform Fourier convolution operations on the metasurfaces with different coding sequences to obtain flexible control of the reflected beam. The reflection characteristics of the coding sequence in the crystalline and amorphous states of the Ge2Sb2Te5 phase change material are demonstrated. The abnormal reflection angle phenomenon of the simulated structure was theoretically analyzed.
期刊介绍:
Physics of Wave Phenomena publishes original contributions in general and nonlinear wave theory, original experimental results in optics, acoustics and radiophysics. The fields of physics represented in this journal include nonlinear optics, acoustics, and radiophysics; nonlinear effects of any nature including nonlinear dynamics and chaos; phase transitions including light- and sound-induced; laser physics; optical and other spectroscopies; new instruments, methods, and measurements of wave and oscillatory processes; remote sensing of waves in natural media; wave interactions in biophysics, econophysics and other cross-disciplinary areas.