代表索波列弗规范的函数族

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haïm Brezis, Andreas Seeger, Jean Van Schaftingen, Po-Lam Yung
{"title":"代表索波列弗规范的函数族","authors":"Haïm Brezis, Andreas Seeger, Jean Van Schaftingen, Po-Lam Yung","doi":"10.2140/apde.2024.17.943","DOIUrl":null,"url":null,"abstract":"<p>We obtain new characterizations of the Sobolev spaces <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>Ẇ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\"false\">)</mo></math> and the bounded variation space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\"><mrow><mi>BV</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mo accent=\"true\">˙</mo></mover><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>. The characterizations are in terms of the functionals <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>u</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo></math>, where </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>u</mi><mo stretchy=\"false\">]</mo>\n<mo>=</mo><mrow><mo fence=\"true\" mathsize=\"1.19em\">{</mo><mrow><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo>\n<mo>∈</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup>\n<mo>×</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup>\n<mo>:</mo>\n<mi>x</mi><mo>≠</mo><mi>y</mi><mo>,</mo> <mfrac><mrow><mo>|</mo><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>u</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo><mo>|</mo></mrow>\n<mrow><mo>|</mo><mi>x</mi>\n<mo>−</mo>\n<mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msup></mrow></mfrac>\n<mo>&gt;</mo>\n<mi>λ</mi></mrow><mo fence=\"true\" mathsize=\"1.19em\">}</mo></mrow>\n</math>\n</div>\n<p> and the measure <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub></math> is given by <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> d</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mo>|</mo><mi>x</mi>\n<mo>−</mo>\n<mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi><mo>−</mo><mi>N</mi></mrow></msup> <mi> d</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>x</mi><mi>d</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>y</mi></math>. We provide characterizations which involve the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>∞</mi></mrow></msup></math>-quasinorms <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> sup</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></msub>\n<mi>λ</mi><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><msup><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>u</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo>∕</mo><mi>p</mi></mrow></msup></math> and also exact formulas via corresponding limit functionals, with the limit for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi>\n<mo>→</mo><mi>∞</mi></math> when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>&gt;</mo> <mn>0</mn></math> and the limit for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi>\n<mo>→</mo> <msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math> when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>&lt;</mo> <mn>0</mn></math>. The results unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>&gt;</mo> <mn>1</mn></math> the characterizations hold for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi><mo>≠</mo><mn>0</mn></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>=</mo> <mn>1</mn></math> the upper bounds for the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup></math> quasinorms fail in the range <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>∈</mo>\n<mo stretchy=\"false\">[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy=\"false\">)</mo></math>; moreover, in this case the limit functionals represent the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math> norm of the gradient for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>∞</mi></mrow></msubsup></math>-functions but not for generic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>Ẇ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math>-functions. For this situation we provide new counterexamples which are built on self-similar sets of dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>+</mo> <mn>1</mn></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>=</mo> <mn>0</mn></math> the characterizations of Sobolev spaces fail; however, we obtain a new formula for the Lipschitz norm via the expressions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ν</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy=\"false\">[</mo><mi>u</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo></math>. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Families of functionals representing Sobolev norms\",\"authors\":\"Haïm Brezis, Andreas Seeger, Jean Van Schaftingen, Po-Lam Yung\",\"doi\":\"10.2140/apde.2024.17.943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain new characterizations of the Sobolev spaces <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>Ẇ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math> and the bounded variation space <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"true\\\"><mrow><mi>BV</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mo accent=\\\"true\\\">˙</mo></mover><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math>. The characterizations are in terms of the functionals <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>u</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">)</mo></math>, where </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>u</mi><mo stretchy=\\\"false\\\">]</mo>\\n<mo>=</mo><mrow><mo fence=\\\"true\\\" mathsize=\\\"1.19em\\\">{</mo><mrow><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>∈</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup>\\n<mo>×</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup>\\n<mo>:</mo>\\n<mi>x</mi><mo>≠</mo><mi>y</mi><mo>,</mo> <mfrac><mrow><mo>|</mo><mi>u</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>−</mo>\\n<mi>u</mi><mo stretchy=\\\"false\\\">(</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo><mo>|</mo></mrow>\\n<mrow><mo>|</mo><mi>x</mi>\\n<mo>−</mo>\\n<mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msup></mrow></mfrac>\\n<mo>&gt;</mo>\\n<mi>λ</mi></mrow><mo fence=\\\"true\\\" mathsize=\\\"1.19em\\\">}</mo></mrow>\\n</math>\\n</div>\\n<p> and the measure <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub></math> is given by <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> d</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo>\\n<mo>|</mo><mi>x</mi>\\n<mo>−</mo>\\n<mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi><mo>−</mo><mi>N</mi></mrow></msup> <mi> d</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>x</mi><mi>d</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>y</mi></math>. We provide characterizations which involve the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>∞</mi></mrow></msup></math>-quasinorms <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> sup</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></msub>\\n<mi>λ</mi><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><msup><mrow><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>u</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mn>1</mn><mo>∕</mo><mi>p</mi></mrow></msup></math> and also exact formulas via corresponding limit functionals, with the limit for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>λ</mi>\\n<mo>→</mo><mi>∞</mi></math> when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>&gt;</mo> <mn>0</mn></math> and the limit for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>λ</mi>\\n<mo>→</mo> <msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math> when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>&lt;</mo> <mn>0</mn></math>. The results unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>&gt;</mo> <mn>1</mn></math> the characterizations hold for all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi><mo>≠</mo><mn>0</mn></math>. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>=</mo> <mn>1</mn></math> the upper bounds for the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup></math> quasinorms fail in the range <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>∈</mo>\\n<mo stretchy=\\\"false\\\">[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo></math>; moreover, in this case the limit functionals represent the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math> norm of the gradient for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>∞</mi></mrow></msubsup></math>-functions but not for generic <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>Ẇ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math>-functions. For this situation we provide new counterexamples which are built on self-similar sets of dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>+</mo> <mn>1</mn></math>. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>=</mo> <mn>0</mn></math> the characterizations of Sobolev spaces fail; however, we obtain a new formula for the Lipschitz norm via the expressions <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ν</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>u</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">)</mo></math>. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.943\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.943","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了索波列夫空间 Ẇ1,p(ℝN)和有界变化空间 BV ˙(ℝN)的新特征。表征以函数 νγ(Eλ,γ∕p[u])为单位,其中 Eλ,γ∕p[u]={(x,y)∈ ℝN× ℝN:x≠y, |u(x)-u(y)||x-y|1+γp∕>λ} ,度量 νγ 由 d νγ(x,y)=|x-y|γ-N d xd y 给出。我们提供了涉及 Lp,∞-quasinorms sup λ>0λνγ(Eλ,γ∕p[u])1∕p 的特征,还通过相应的极限函数提供了精确公式,当 γ> 0 时为 λ→∞ 的极限,当 γ< 0 时为 λ→ 0+ 的极限。这些结果统一并大大扩展了 Nguyen 以及 Brezis、Van Schaftingen 和 Yung 以前的工作。对于 p> 1,所有 γ≠0 的特征都成立。当 p= 1 时,L1,∞ 准矩阵的上界在γ∈[-1,0]范围内失效;此外,在这种情况下,极限函数代表 Cc∞ 函数梯度的 L1 准则,但不代表一般Ẇ1,1 函数的 L1 准则。针对这种情况,我们提供了建立在维数 γ+ 1 的自相似集合上的新反例。对于 γ= 0,索波列夫空间的表征失败;然而,我们通过表达式 ν0(Eλ,0[u])得到了立普齐兹规范的新公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Families of functionals representing Sobolev norms

We obtain new characterizations of the Sobolev spaces 1,p(N) and the bounded variation space BV ˙(N). The characterizations are in terms of the functionals νγ(Eλ,γp[u]), where

Eλ,γp[u] ={(x,y) N × N : xy, |u(x) u(y)| |x y|1+γp > λ}

and the measure νγ is given by d νγ(x,y) = |x y|γN d xd y. We provide characterizations which involve the Lp,-quasinorms sup λ>0 λνγ(Eλ,γp[u])1p and also exact formulas via corresponding limit functionals, with the limit for λ when γ > 0 and the limit for λ 0+ when γ < 0. The results unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For p > 1 the characterizations hold for all γ0. For p = 1 the upper bounds for the L1, quasinorms fail in the range γ [1,0); moreover, in this case the limit functionals represent the L1 norm of the gradient for Cc-functions but not for generic 1,1-functions. For this situation we provide new counterexamples which are built on self-similar sets of dimension γ + 1. For γ = 0 the characterizations of Sobolev spaces fail; however, we obtain a new formula for the Lipschitz norm via the expressions ν0(Eλ,0[u]).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信