Haïm Brezis, Andreas Seeger, Jean Van Schaftingen, Po-Lam Yung
{"title":"代表索波列弗规范的函数族","authors":"Haïm Brezis, Andreas Seeger, Jean Van Schaftingen, Po-Lam Yung","doi":"10.2140/apde.2024.17.943","DOIUrl":null,"url":null,"abstract":"<p>We obtain new characterizations of the Sobolev spaces <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>Ẇ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\"false\">)</mo></math> and the bounded variation space <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\"><mrow><mi>BV</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mo accent=\"true\">˙</mo></mover><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\"false\">)</mo></math>. The characterizations are in terms of the functionals <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>u</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo></math>, where </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>u</mi><mo stretchy=\"false\">]</mo>\n<mo>=</mo><mrow><mo fence=\"true\" mathsize=\"1.19em\">{</mo><mrow><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo>\n<mo>∈</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup>\n<mo>×</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup>\n<mo>:</mo>\n<mi>x</mi><mo>≠</mo><mi>y</mi><mo>,</mo> <mfrac><mrow><mo>|</mo><mi>u</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo>\n<mo>−</mo>\n<mi>u</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo><mo>|</mo></mrow>\n<mrow><mo>|</mo><mi>x</mi>\n<mo>−</mo>\n<mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msup></mrow></mfrac>\n<mo>></mo>\n<mi>λ</mi></mrow><mo fence=\"true\" mathsize=\"1.19em\">}</mo></mrow>\n</math>\n</div>\n<p> and the measure <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub></math> is given by <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi> d</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo>\n<mo>=</mo>\n<mo>|</mo><mi>x</mi>\n<mo>−</mo>\n<mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi><mo>−</mo><mi>N</mi></mrow></msup> <mi> d</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>x</mi><mi>d</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>y</mi></math>. We provide characterizations which involve the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>∞</mi></mrow></msup></math>-quasinorms <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> sup</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></msub>\n<mi>λ</mi><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><msup><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>u</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo>∕</mo><mi>p</mi></mrow></msup></math> and also exact formulas via corresponding limit functionals, with the limit for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi>\n<mo>→</mo><mi>∞</mi></math> when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>></mo> <mn>0</mn></math> and the limit for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi>\n<mo>→</mo> <msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math> when <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo><</mo> <mn>0</mn></math>. The results unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>></mo> <mn>1</mn></math> the characterizations hold for all <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi><mo>≠</mo><mn>0</mn></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>=</mo> <mn>1</mn></math> the upper bounds for the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup></math> quasinorms fail in the range <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>∈</mo>\n<mo stretchy=\"false\">[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy=\"false\">)</mo></math>; moreover, in this case the limit functionals represent the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math> norm of the gradient for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>∞</mi></mrow></msubsup></math>-functions but not for generic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>Ẇ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math>-functions. For this situation we provide new counterexamples which are built on self-similar sets of dimension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>+</mo> <mn>1</mn></math>. For <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi>\n<mo>=</mo> <mn>0</mn></math> the characterizations of Sobolev spaces fail; however, we obtain a new formula for the Lipschitz norm via the expressions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ν</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy=\"false\">[</mo><mi>u</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">)</mo></math>. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Families of functionals representing Sobolev norms\",\"authors\":\"Haïm Brezis, Andreas Seeger, Jean Van Schaftingen, Po-Lam Yung\",\"doi\":\"10.2140/apde.2024.17.943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain new characterizations of the Sobolev spaces <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>Ẇ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math> and the bounded variation space <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"true\\\"><mrow><mi>BV</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mo accent=\\\"true\\\">˙</mo></mover><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math>. The characterizations are in terms of the functionals <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>u</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">)</mo></math>, where </p>\\n<div><math display=\\\"block\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n<msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>u</mi><mo stretchy=\\\"false\\\">]</mo>\\n<mo>=</mo><mrow><mo fence=\\\"true\\\" mathsize=\\\"1.19em\\\">{</mo><mrow><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>∈</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup>\\n<mo>×</mo> <msup><mrow><mi>ℝ</mi></mrow><mrow><mi>N</mi></mrow></msup>\\n<mo>:</mo>\\n<mi>x</mi><mo>≠</mo><mi>y</mi><mo>,</mo> <mfrac><mrow><mo>|</mo><mi>u</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>−</mo>\\n<mi>u</mi><mo stretchy=\\\"false\\\">(</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo><mo>|</mo></mrow>\\n<mrow><mo>|</mo><mi>x</mi>\\n<mo>−</mo>\\n<mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>1</mn><mo>+</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msup></mrow></mfrac>\\n<mo>></mo>\\n<mi>λ</mi></mrow><mo fence=\\\"true\\\" mathsize=\\\"1.19em\\\">}</mo></mrow>\\n</math>\\n</div>\\n<p> and the measure <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub></math> is given by <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi> d</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo>\\n<mo>=</mo>\\n<mo>|</mo><mi>x</mi>\\n<mo>−</mo>\\n<mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>γ</mi><mo>−</mo><mi>N</mi></mrow></msup> <mi> d</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>x</mi><mi>d</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--><mi>y</mi></math>. We provide characterizations which involve the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>∞</mi></mrow></msup></math>-quasinorms <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi> sup</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mi>λ</mi><mo>></mo><mn>0</mn></mrow></msub>\\n<mi>λ</mi><msub><mrow><mi>ν</mi></mrow><mrow><mi>γ</mi></mrow></msub><msup><mrow><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mi>γ</mi><mo>∕</mo><mi>p</mi></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>u</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mn>1</mn><mo>∕</mo><mi>p</mi></mrow></msup></math> and also exact formulas via corresponding limit functionals, with the limit for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>λ</mi>\\n<mo>→</mo><mi>∞</mi></math> when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>></mo> <mn>0</mn></math> and the limit for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>λ</mi>\\n<mo>→</mo> <msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math> when <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo><</mo> <mn>0</mn></math>. The results unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>></mo> <mn>1</mn></math> the characterizations hold for all <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi><mo>≠</mo><mn>0</mn></math>. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>p</mi>\\n<mo>=</mo> <mn>1</mn></math> the upper bounds for the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>∞</mi></mrow></msup></math> quasinorms fail in the range <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>∈</mo>\\n<mo stretchy=\\\"false\\\">[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo></math>; moreover, in this case the limit functionals represent the <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math> norm of the gradient for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msubsup><mrow><mi>C</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>∞</mi></mrow></msubsup></math>-functions but not for generic <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>Ẇ</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math>-functions. For this situation we provide new counterexamples which are built on self-similar sets of dimension <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>+</mo> <mn>1</mn></math>. For <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi>\\n<mo>=</mo> <mn>0</mn></math> the characterizations of Sobolev spaces fail; however, we obtain a new formula for the Lipschitz norm via the expressions <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mrow><mi>ν</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>λ</mi><mo>,</mo><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">[</mo><mi>u</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">)</mo></math>. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.943\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.943","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Families of functionals representing Sobolev norms
We obtain new characterizations of the Sobolev spaces and the bounded variation space . The characterizations are in terms of the functionals , where
and the measure is given by . We provide characterizations which involve the -quasinorms and also exact formulas via corresponding limit functionals, with the limit for when and the limit for when . The results unify and substantially extend previous work by Nguyen and by Brezis, Van Schaftingen and Yung. For the characterizations hold for all . For the upper bounds for the quasinorms fail in the range ; moreover, in this case the limit functionals represent the norm of the gradient for -functions but not for generic -functions. For this situation we provide new counterexamples which are built on self-similar sets of dimension . For the characterizations of Sobolev spaces fail; however, we obtain a new formula for the Lipschitz norm via the expressions .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.