第 2 维障碍物散射的光谱间隙

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lucas Vacossin
{"title":"第 2 维障碍物散射的光谱间隙","authors":"Lucas Vacossin","doi":"10.2140/apde.2024.17.1019","DOIUrl":null,"url":null,"abstract":"<p>We study the problem of scattering by several strictly convex obstacles, with smooth boundary and satisfying a noneclipse condition. We show, in dimension 2 only, the existence of a spectral gap for the meromorphic continuation of the Laplace operator outside the obstacles. The proof of this result relies on a reduction to an <span>open hyperbolic quantum map</span>, achieved by Nonnenmacher et al. (<span>Ann. of</span>\n<span>Math.</span><span> </span><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math>\n<span>179</span>:1 (2014), 179–251). In fact, we obtain a spectral gap for this type of object, which also has applications in potential scattering. The second main ingredient of this article is a fractal uncertainty principle. We adapt the techniques of Dyatlov et al. (<span>J. Amer. Math. Soc. </span><span>35</span>:2 (2022), 361–465) to apply this fractal uncertainty principle in our context. </p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral gap for obstacle scattering in dimension 2\",\"authors\":\"Lucas Vacossin\",\"doi\":\"10.2140/apde.2024.17.1019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem of scattering by several strictly convex obstacles, with smooth boundary and satisfying a noneclipse condition. We show, in dimension 2 only, the existence of a spectral gap for the meromorphic continuation of the Laplace operator outside the obstacles. The proof of this result relies on a reduction to an <span>open hyperbolic quantum map</span>, achieved by Nonnenmacher et al. (<span>Ann. of</span>\\n<span>Math.</span><span> </span><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo stretchy=\\\"false\\\">)</mo></math>\\n<span>179</span>:1 (2014), 179–251). In fact, we obtain a spectral gap for this type of object, which also has applications in potential scattering. The second main ingredient of this article is a fractal uncertainty principle. We adapt the techniques of Dyatlov et al. (<span>J. Amer. Math. Soc. </span><span>35</span>:2 (2022), 361–465) to apply this fractal uncertainty principle in our context. </p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.1019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.1019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了几个严格凸面障碍物的散射问题,这些障碍物边界光滑,满足非椭圆条件。我们证明,仅在维度 2 中,拉普拉斯算子在障碍物外的离谱延续存在谱隙。这一结果的证明依赖于Nonnenmacher等人对开放双曲量子映射的还原(Ann. ofMath. (2)179:1 (2014), 179-251)。事实上,我们得到了这类对象的谱隙,这在势散射中也有应用。本文的第二个主要内容是分形不确定性原理。我们采用了 Dyatlov 等人的技术(J. Amer.Math.35:2 (2022), 361-465)的技术,将分形不确定性原理应用到我们的研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral gap for obstacle scattering in dimension 2

We study the problem of scattering by several strictly convex obstacles, with smooth boundary and satisfying a noneclipse condition. We show, in dimension 2 only, the existence of a spectral gap for the meromorphic continuation of the Laplace operator outside the obstacles. The proof of this result relies on a reduction to an open hyperbolic quantum map, achieved by Nonnenmacher et al. (Ann. of Math. (2) 179:1 (2014), 179–251). In fact, we obtain a spectral gap for this type of object, which also has applications in potential scattering. The second main ingredient of this article is a fractal uncertainty principle. We adapt the techniques of Dyatlov et al. (J. Amer. Math. Soc. 35:2 (2022), 361–465) to apply this fractal uncertainty principle in our context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信