非交换秩的多变量到双变量还原及相关结果

Vikraman Arvind, Pushkar S Joglekar
{"title":"非交换秩的多变量到双变量还原及相关结果","authors":"Vikraman Arvind, Pushkar S Joglekar","doi":"arxiv-2404.16382","DOIUrl":null,"url":null,"abstract":"We study the noncommutative rank problem, ncRANK, of computing the rank of\nmatrices with linear entries in $n$ noncommuting variables and the problem of\nnoncommutative Rational Identity Testing, RIT, which is to decide if a given\nrational formula in $n$ noncommuting variables is zero on its domain of\ndefinition. Motivated by the question whether these problems have deterministic\nNC algorithms, we revisit their interrelationship from a parallel complexity\npoint of view. We show the following results: 1. Based on Cohn's embedding theorem \\cite{Co90,Cohnfir} we show\ndeterministic NC reductions from multivariate ncRANK to bivariate ncRANK and\nfrom multivariate RIT to bivariate RIT. 2. We obtain a deterministic NC-Turing reduction from bivariate $\\RIT$ to\nbivariate ncRANK, thereby proving that a deterministic NC algorithm for\nbivariate ncRANK would imply that both multivariate RIT and multivariate ncRANK\nare in deterministic NC.","PeriodicalId":501024,"journal":{"name":"arXiv - CS - Computational Complexity","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multivariate to Bivariate Reduction for Noncommutative Rank and Related Results\",\"authors\":\"Vikraman Arvind, Pushkar S Joglekar\",\"doi\":\"arxiv-2404.16382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the noncommutative rank problem, ncRANK, of computing the rank of\\nmatrices with linear entries in $n$ noncommuting variables and the problem of\\nnoncommutative Rational Identity Testing, RIT, which is to decide if a given\\nrational formula in $n$ noncommuting variables is zero on its domain of\\ndefinition. Motivated by the question whether these problems have deterministic\\nNC algorithms, we revisit their interrelationship from a parallel complexity\\npoint of view. We show the following results: 1. Based on Cohn's embedding theorem \\\\cite{Co90,Cohnfir} we show\\ndeterministic NC reductions from multivariate ncRANK to bivariate ncRANK and\\nfrom multivariate RIT to bivariate RIT. 2. We obtain a deterministic NC-Turing reduction from bivariate $\\\\RIT$ to\\nbivariate ncRANK, thereby proving that a deterministic NC algorithm for\\nbivariate ncRANK would imply that both multivariate RIT and multivariate ncRANK\\nare in deterministic NC.\",\"PeriodicalId\":501024,\"journal\":{\"name\":\"arXiv - CS - Computational Complexity\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.16382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.16382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了计算在 $n$ 非交换变量中具有线性项的矩阵秩的非交换秩问题 ncRANK,以及非交换有理同一性检验问题 RIT,即判定在 $n$ 非交换变量中的给定有理式在其定义域上是否为零。受这些问题是否有确定性NC 算法这一问题的启发,我们从并行复杂性的角度重新审视了它们之间的相互关系。我们展示了以下结果:1.基于 Cohn 的嵌入定理 (cite{Co90,Cohnfir}),我们展示了从多变量 ncRANK 到双变量 ncRANK 以及从多变量 RIT 到双变量 RIT 的确定性 NC 还原。2.2. 我们得到了从二维 $\RIT$ 到二维 ncRANK 的确定性 NC 图灵还原,从而证明了二维 ncRANK 的确定性 NC 算法将意味着多变量 RIT 和多变量 ncRANK 都在确定性 NC 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multivariate to Bivariate Reduction for Noncommutative Rank and Related Results
We study the noncommutative rank problem, ncRANK, of computing the rank of matrices with linear entries in $n$ noncommuting variables and the problem of noncommutative Rational Identity Testing, RIT, which is to decide if a given rational formula in $n$ noncommuting variables is zero on its domain of definition. Motivated by the question whether these problems have deterministic NC algorithms, we revisit their interrelationship from a parallel complexity point of view. We show the following results: 1. Based on Cohn's embedding theorem \cite{Co90,Cohnfir} we show deterministic NC reductions from multivariate ncRANK to bivariate ncRANK and from multivariate RIT to bivariate RIT. 2. We obtain a deterministic NC-Turing reduction from bivariate $\RIT$ to bivariate ncRANK, thereby proving that a deterministic NC algorithm for bivariate ncRANK would imply that both multivariate RIT and multivariate ncRANK are in deterministic NC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信