{"title":"粉煤灰土壤改良对土壤微生物群落活动和土壤理化性质的影响","authors":"Fangze Li, Tianqi Qi, Ge Zhang, Xingjie Lin, Xiaohua Li, Zhenqing Wu, Shuhui Men, Hongchao Liu, Shiwei Zhang, Zhanbin Huang","doi":"10.1186/s13213-024-01758-7","DOIUrl":null,"url":null,"abstract":"Hundreds of millions of tons coal fly ash are produced annually to support economic development and industrial production. However, directly applying coal fly ash to agricultural production can decrease the land productivity and pose a threat to the ecosystem due to the poor physicochemical properties and seriously heavy metal pollution. In this study, a field experiment to investigate the effects of coal fly ash as a soil amendment was conducted in Hebei province, China. The coal fly ash (CFA) soil field was mixed with the carrier soil (CS, without containing coal fly ash) at different rates (0–40% mass content) in the 0–20 cm layer of top soil and then mixed with a rotovator. The soil was then amended with 0.45–1.80 kg·m− 2 of G1 soil amendment for planting corn. The purpose of this study is to investigate the response mechanism of soil microbial community activities, and soil physicochemical properties to soil amendment and carrier soil in coal fly ash soil. The study found that the G1 amendment, which consisted of humic acid, polyacrylamide, zeolite powder, and FeSO4·7H2O, improved the soil chemical properties and physical structure by increasing soil bulk density and macroaggregates. The highest corn yield was observed in B5 (20% CS and 1.3500 kg·m− 2 G1). Meanwhile, the abundance of microorganisms that facilitate the circulation of soil nutrients such as Acidobacteria (77.05%), Sphingomonas (25.60%), Nitrospira (20.78%), Streptomyces (11.32%), and Gaiella (10.20%) was increased. Overall, our results indicate that the use of coal fly ash soil as a amendment can enhance soil sustainability by improving soil microbial functions. These findings provide a reference for the development and application of coal fly ash soil amendments.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of soil microbial community activities and soil physicochemical properties to coal fly ash soil amendment\",\"authors\":\"Fangze Li, Tianqi Qi, Ge Zhang, Xingjie Lin, Xiaohua Li, Zhenqing Wu, Shuhui Men, Hongchao Liu, Shiwei Zhang, Zhanbin Huang\",\"doi\":\"10.1186/s13213-024-01758-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hundreds of millions of tons coal fly ash are produced annually to support economic development and industrial production. However, directly applying coal fly ash to agricultural production can decrease the land productivity and pose a threat to the ecosystem due to the poor physicochemical properties and seriously heavy metal pollution. In this study, a field experiment to investigate the effects of coal fly ash as a soil amendment was conducted in Hebei province, China. The coal fly ash (CFA) soil field was mixed with the carrier soil (CS, without containing coal fly ash) at different rates (0–40% mass content) in the 0–20 cm layer of top soil and then mixed with a rotovator. The soil was then amended with 0.45–1.80 kg·m− 2 of G1 soil amendment for planting corn. The purpose of this study is to investigate the response mechanism of soil microbial community activities, and soil physicochemical properties to soil amendment and carrier soil in coal fly ash soil. The study found that the G1 amendment, which consisted of humic acid, polyacrylamide, zeolite powder, and FeSO4·7H2O, improved the soil chemical properties and physical structure by increasing soil bulk density and macroaggregates. The highest corn yield was observed in B5 (20% CS and 1.3500 kg·m− 2 G1). Meanwhile, the abundance of microorganisms that facilitate the circulation of soil nutrients such as Acidobacteria (77.05%), Sphingomonas (25.60%), Nitrospira (20.78%), Streptomyces (11.32%), and Gaiella (10.20%) was increased. Overall, our results indicate that the use of coal fly ash soil as a amendment can enhance soil sustainability by improving soil microbial functions. These findings provide a reference for the development and application of coal fly ash soil amendments.\",\"PeriodicalId\":8069,\"journal\":{\"name\":\"Annals of Microbiology\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13213-024-01758-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13213-024-01758-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Responses of soil microbial community activities and soil physicochemical properties to coal fly ash soil amendment
Hundreds of millions of tons coal fly ash are produced annually to support economic development and industrial production. However, directly applying coal fly ash to agricultural production can decrease the land productivity and pose a threat to the ecosystem due to the poor physicochemical properties and seriously heavy metal pollution. In this study, a field experiment to investigate the effects of coal fly ash as a soil amendment was conducted in Hebei province, China. The coal fly ash (CFA) soil field was mixed with the carrier soil (CS, without containing coal fly ash) at different rates (0–40% mass content) in the 0–20 cm layer of top soil and then mixed with a rotovator. The soil was then amended with 0.45–1.80 kg·m− 2 of G1 soil amendment for planting corn. The purpose of this study is to investigate the response mechanism of soil microbial community activities, and soil physicochemical properties to soil amendment and carrier soil in coal fly ash soil. The study found that the G1 amendment, which consisted of humic acid, polyacrylamide, zeolite powder, and FeSO4·7H2O, improved the soil chemical properties and physical structure by increasing soil bulk density and macroaggregates. The highest corn yield was observed in B5 (20% CS and 1.3500 kg·m− 2 G1). Meanwhile, the abundance of microorganisms that facilitate the circulation of soil nutrients such as Acidobacteria (77.05%), Sphingomonas (25.60%), Nitrospira (20.78%), Streptomyces (11.32%), and Gaiella (10.20%) was increased. Overall, our results indicate that the use of coal fly ash soil as a amendment can enhance soil sustainability by improving soil microbial functions. These findings provide a reference for the development and application of coal fly ash soil amendments.
期刊介绍:
Annals of Microbiology covers these fields of fundamental and applied microbiology:
general, environmental, food, agricultural, industrial, ecology, soil, water, air and biodeterioration.
The journal’s scope does not include medical microbiology or phytopathological microbiology.
Papers reporting work on bacteria, fungi, microalgae, and bacteriophages are welcome.
Annals of Microbiology publishes Review Articles, Original Articles, Short Communications, and Editorials.
Originally founded as Annali Di Microbiologia Ed Enzimologia in 1940, Annals of Microbiology is an official journal of the University of Milan.