{"title":"单层和多层加固织物的凹凸小半径弯曲行为","authors":"Philippe Kanz, Francois Robitaille","doi":"10.1177/00405175241246554","DOIUrl":null,"url":null,"abstract":"Multilayer reinforcement fabrics are increasingly used for manufacturing structural polymer composites. In liquid molding processes, dry reinforcement fabrics are draped on a mold first, and infused with a liquid resin such as an epoxy in a subsequent manufacturing step. This presents major advantages in terms of operational flexibility and costs. However, draping multilayer reinforcement fabrics on complex mold geometries is challenging. Small radius mold corners constitute a major manufacturing challenge as they lead to variability in dry fabric positioning and resin-rich corners in polymer composite parts. Spring-back of fabrics bent over or into single curvature mold corners is a widespread industrial concern. However, contrary to draping over double-curvature surfaces, bending spring-back from convex or concave single-curvature corners has received very limited attention. No testing method is available. This paper quantifies reinforcement fabric bending spring-back. Single and multiple layer stacks were bent along three directions over convex and into concave 90° corners with five radii spanning 1.59 mm to 12.70 mm. In all cases, five replicated tests enabled variability quantification. Fabric stacks were also quantified using cantilevered bending tests for comparison purposes. Mold radius was found to affect the behavior to a larger extent than testing direction, number of layers or use of a binder.","PeriodicalId":22323,"journal":{"name":"Textile Research Journal","volume":"51 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concave and convex small radius bending behavior of single and multiple layers reinforcement fabrics\",\"authors\":\"Philippe Kanz, Francois Robitaille\",\"doi\":\"10.1177/00405175241246554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilayer reinforcement fabrics are increasingly used for manufacturing structural polymer composites. In liquid molding processes, dry reinforcement fabrics are draped on a mold first, and infused with a liquid resin such as an epoxy in a subsequent manufacturing step. This presents major advantages in terms of operational flexibility and costs. However, draping multilayer reinforcement fabrics on complex mold geometries is challenging. Small radius mold corners constitute a major manufacturing challenge as they lead to variability in dry fabric positioning and resin-rich corners in polymer composite parts. Spring-back of fabrics bent over or into single curvature mold corners is a widespread industrial concern. However, contrary to draping over double-curvature surfaces, bending spring-back from convex or concave single-curvature corners has received very limited attention. No testing method is available. This paper quantifies reinforcement fabric bending spring-back. Single and multiple layer stacks were bent along three directions over convex and into concave 90° corners with five radii spanning 1.59 mm to 12.70 mm. In all cases, five replicated tests enabled variability quantification. Fabric stacks were also quantified using cantilevered bending tests for comparison purposes. Mold radius was found to affect the behavior to a larger extent than testing direction, number of layers or use of a binder.\",\"PeriodicalId\":22323,\"journal\":{\"name\":\"Textile Research Journal\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textile Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00405175241246554\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00405175241246554","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Concave and convex small radius bending behavior of single and multiple layers reinforcement fabrics
Multilayer reinforcement fabrics are increasingly used for manufacturing structural polymer composites. In liquid molding processes, dry reinforcement fabrics are draped on a mold first, and infused with a liquid resin such as an epoxy in a subsequent manufacturing step. This presents major advantages in terms of operational flexibility and costs. However, draping multilayer reinforcement fabrics on complex mold geometries is challenging. Small radius mold corners constitute a major manufacturing challenge as they lead to variability in dry fabric positioning and resin-rich corners in polymer composite parts. Spring-back of fabrics bent over or into single curvature mold corners is a widespread industrial concern. However, contrary to draping over double-curvature surfaces, bending spring-back from convex or concave single-curvature corners has received very limited attention. No testing method is available. This paper quantifies reinforcement fabric bending spring-back. Single and multiple layer stacks were bent along three directions over convex and into concave 90° corners with five radii spanning 1.59 mm to 12.70 mm. In all cases, five replicated tests enabled variability quantification. Fabric stacks were also quantified using cantilevered bending tests for comparison purposes. Mold radius was found to affect the behavior to a larger extent than testing direction, number of layers or use of a binder.
期刊介绍:
The Textile Research Journal is the leading peer reviewed Journal for textile research. It is devoted to the dissemination of fundamental, theoretical and applied scientific knowledge in materials, chemistry, manufacture and system sciences related to fibers, fibrous assemblies and textiles. The Journal serves authors and subscribers worldwide, and it is selective in accepting contributions on the basis of merit, novelty and originality.