{"title":"关于双序列的延迟 f 统计收敛性","authors":"Yahui Zhu, Ang Shen, Zhongzhi Wang, Weicai Peng","doi":"10.1515/math-2023-0174","DOIUrl":null,"url":null,"abstract":"In this article, we first put forward the concept of deferred <jats:italic>f</jats:italic>-double natural density for double sequences, where <jats:italic>f</jats:italic> is an unbounded modulus. Then, we combine <jats:italic>f</jats:italic>-density with deferred statistical convergence for double sequences and investigate deferred <jats:italic>f</jats:italic>-statistical convergence and strongly deferred <jats:italic>Cesàro</jats:italic> summability with respect to modulus <jats:italic>f</jats:italic>. Moreover, we extend these concepts to deferred <jats:italic>f</jats:italic>-statistical convergence for double sequences of random variables in the Wijsman sense and prove some inclusions. Finally, we consider the concepts of deferred <jats:italic>f</jats:italic>-statistical convergence of order <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0174_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> </m:math> <jats:tex-math>\\alpha </jats:tex-math> </jats:alternatives> </jats:inline-formula> and strongly deferred <jats:italic>f</jats:italic>-summability of order <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0174_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> </m:math> <jats:tex-math>\\alpha </jats:tex-math> </jats:alternatives> </jats:inline-formula> for double sequences and obtain some conclusions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On deferred f-statistical convergence for double sequences\",\"authors\":\"Yahui Zhu, Ang Shen, Zhongzhi Wang, Weicai Peng\",\"doi\":\"10.1515/math-2023-0174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we first put forward the concept of deferred <jats:italic>f</jats:italic>-double natural density for double sequences, where <jats:italic>f</jats:italic> is an unbounded modulus. Then, we combine <jats:italic>f</jats:italic>-density with deferred statistical convergence for double sequences and investigate deferred <jats:italic>f</jats:italic>-statistical convergence and strongly deferred <jats:italic>Cesàro</jats:italic> summability with respect to modulus <jats:italic>f</jats:italic>. Moreover, we extend these concepts to deferred <jats:italic>f</jats:italic>-statistical convergence for double sequences of random variables in the Wijsman sense and prove some inclusions. Finally, we consider the concepts of deferred <jats:italic>f</jats:italic>-statistical convergence of order <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0174_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>α</m:mi> </m:math> <jats:tex-math>\\\\alpha </jats:tex-math> </jats:alternatives> </jats:inline-formula> and strongly deferred <jats:italic>f</jats:italic>-summability of order <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0174_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>α</m:mi> </m:math> <jats:tex-math>\\\\alpha </jats:tex-math> </jats:alternatives> </jats:inline-formula> for double sequences and obtain some conclusions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0174\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0174","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们首先提出了双序列的延迟 f-双自然密度概念,其中 f 是无界模数。然后,我们将 f-density 与双序列的延迟统计收敛结合起来,研究了关于模 f 的延迟 f 统计收敛和强延迟 Cesàro 可求和性。此外,我们将这些概念扩展到维杰曼意义上的随机变量双序列的延迟 f 统计收敛,并证明了一些结论。最后,我们考虑了双序列的阶α \alpha 的延迟 f 统计收敛性和阶α \alpha 的强延迟 f 可求和性的概念,并得出了一些结论。
On deferred f-statistical convergence for double sequences
In this article, we first put forward the concept of deferred f-double natural density for double sequences, where f is an unbounded modulus. Then, we combine f-density with deferred statistical convergence for double sequences and investigate deferred f-statistical convergence and strongly deferred Cesàro summability with respect to modulus f. Moreover, we extend these concepts to deferred f-statistical convergence for double sequences of random variables in the Wijsman sense and prove some inclusions. Finally, we consider the concepts of deferred f-statistical convergence of order α\alpha and strongly deferred f-summability of order α\alpha for double sequences and obtain some conclusions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.