{"title":"具有卷积型噪声的随机三维纳维-斯托克斯方程解的寿命下限估计","authors":"Siyu Liang","doi":"10.1142/s0219025724500024","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the stochastic 3D Navier–Stokes equations perturbed by linear multiplicative Gaussian noise of convolution type by transformation to random PDEs. We focus on obtaining bounds from below for the life span associated with regular initial data. The key point of the proof is the fixed point argument.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lower bound estimate of life span of solutions to stochastic 3D Navier–Stokes equations with convolution-type noise\",\"authors\":\"Siyu Liang\",\"doi\":\"10.1142/s0219025724500024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the stochastic 3D Navier–Stokes equations perturbed by linear multiplicative Gaussian noise of convolution type by transformation to random PDEs. We focus on obtaining bounds from below for the life span associated with regular initial data. The key point of the proof is the fixed point argument.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025724500024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025724500024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A lower bound estimate of life span of solutions to stochastic 3D Navier–Stokes equations with convolution-type noise
In this paper, we investigate the stochastic 3D Navier–Stokes equations perturbed by linear multiplicative Gaussian noise of convolution type by transformation to random PDEs. We focus on obtaining bounds from below for the life span associated with regular initial data. The key point of the proof is the fixed point argument.