q-维特克多项式和修正霍尔-利特尔伍德多项式的不同组合模型之间的双射

T. V. Ratheesh
{"title":"q-维特克多项式和修正霍尔-利特尔伍德多项式的不同组合模型之间的双射","authors":"T. V. Ratheesh","doi":"10.1007/s13226-024-00598-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the monomial expansion of the <i>q</i>-Whittaker polynomials and the modified Hall-Littlewood polynomials arising from specialization of the modified Macdonald polynomial. The two combinatorial formulas for the latter, due to Haglund, Haiman, and Loehr and Ayyer, Mandelshtam and Martin, give rise to two different parameterizing sets in each case. We produce bijections between the parameterizing sets, which preserve the content and major index statistics. We identify the major index with the charge or cocharge of appropriate words, and use descriptions of the latter due to Lascoux–Schützenberger and Killpatrick to show that our bijections have the desired properties.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bijections between different combinatorial models for q-Whittaker and modified Hall-Littlewood polynomials\",\"authors\":\"T. V. Ratheesh\",\"doi\":\"10.1007/s13226-024-00598-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the monomial expansion of the <i>q</i>-Whittaker polynomials and the modified Hall-Littlewood polynomials arising from specialization of the modified Macdonald polynomial. The two combinatorial formulas for the latter, due to Haglund, Haiman, and Loehr and Ayyer, Mandelshtam and Martin, give rise to two different parameterizing sets in each case. We produce bijections between the parameterizing sets, which preserve the content and major index statistics. We identify the major index with the charge or cocharge of appropriate words, and use descriptions of the latter due to Lascoux–Schützenberger and Killpatrick to show that our bijections have the desired properties.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00598-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00598-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了 q-Whittaker 多项式的单项式展开,以及修正麦克唐纳多项式的特殊化所产生的修正霍尔-利特尔伍德多项式。后者的两个组合公式分别由哈格伦德、海曼和洛尔以及艾耶尔、曼德尔施塔姆和马丁提出,在每种情况下都会产生两个不同的参数化集。我们在参数化集之间建立双射,从而保留了内容和主要指数统计量。我们将主要索引与适当词语的电荷或共电荷相提并论,并利用拉斯科-舒岑伯格(Lascoux-Schützenberger)和基尔帕特里克(Killpatrick)对后者的描述来证明我们的双射具有所需的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bijections between different combinatorial models for q-Whittaker and modified Hall-Littlewood polynomials

We consider the monomial expansion of the q-Whittaker polynomials and the modified Hall-Littlewood polynomials arising from specialization of the modified Macdonald polynomial. The two combinatorial formulas for the latter, due to Haglund, Haiman, and Loehr and Ayyer, Mandelshtam and Martin, give rise to two different parameterizing sets in each case. We produce bijections between the parameterizing sets, which preserve the content and major index statistics. We identify the major index with the charge or cocharge of appropriate words, and use descriptions of the latter due to Lascoux–Schützenberger and Killpatrick to show that our bijections have the desired properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信