{"title":"算术级数中两个比蒂素数乘积之间的偏差","authors":"Walid Wannes","doi":"10.1007/s13226-024-00596-2","DOIUrl":null,"url":null,"abstract":"<p>Motivated by a recently observed bias in products of two prime numbers with congruence conditions by Dummit, Granville and Kisilevsky, we try to observe some bias in the distribution of integers which are product of two distinct primes taken from Beatty sequences with each one is in an arithmetic progression.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biases amongst products of two Beatty primes in arithmetic progressions\",\"authors\":\"Walid Wannes\",\"doi\":\"10.1007/s13226-024-00596-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Motivated by a recently observed bias in products of two prime numbers with congruence conditions by Dummit, Granville and Kisilevsky, we try to observe some bias in the distribution of integers which are product of two distinct primes taken from Beatty sequences with each one is in an arithmetic progression.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"131 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00596-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00596-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biases amongst products of two Beatty primes in arithmetic progressions
Motivated by a recently observed bias in products of two prime numbers with congruence conditions by Dummit, Granville and Kisilevsky, we try to observe some bias in the distribution of integers which are product of two distinct primes taken from Beatty sequences with each one is in an arithmetic progression.