{"title":"论带柳维尔-韦尔分式导数的分式基尔霍夫问题","authors":"N. Nyamoradi, C. E. Torres Ledesma","doi":"10.3103/s1068362324700055","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we study the following fractional Kirchhoff-type problem with Liouville–Weyl fractional derivatives:</p><span>$$\\begin{cases}\\left[a+b\\left(\\int\\limits_{\\mathbb{R}}(|u|^{2}+|{{}_{-\\infty}}D_{x}^{\\beta}u|^{2})dx\\right)^{\\varrho-1}\\right]({{}_{x}}D_{\\infty}^{\\beta}({{}_{-\\infty}}D_{x}^{\\beta}u)+u)=|u|^{2^{*}_{\\beta}-2}u,in~\\mathbb{R},\\\\ u\\in\\mathbb{I}_{-}^{\\beta}(\\mathbb{R}),\\end{cases}$$</span><p>where <span>\\(\\beta\\in(0,\\frac{1}{2})\\)</span>, <span>\\(\\varrho>1\\)</span>, <span>\\({{}_{-\\infty}}D_{x}^{\\beta}u(\\cdot)\\)</span>, and <span>\\({{}_{x}}D_{\\infty}^{\\beta}u(\\cdot)\\)</span> denote the left and right Liouville–Weyl fractional derivatives, <span>\\(2_{\\beta}^{*}=\\frac{2}{1-2\\beta}\\)</span> is fractional critical Sobolev exponent <span>\\(a\\geq 0\\)</span> and <span>\\(b>0\\)</span>. Under suitable values of the parameters <span>\\(\\varrho\\)</span>, <span>\\(a\\)</span> and <span>\\(b\\)</span>, we obtain a nonexistence result of nontrivial solutions of infinitely many nontrivial solutions for the above problem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Fractional Kirchhoff Problems with Liouville–Weyl Fractional Derivatives\",\"authors\":\"N. Nyamoradi, C. E. Torres Ledesma\",\"doi\":\"10.3103/s1068362324700055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, we study the following fractional Kirchhoff-type problem with Liouville–Weyl fractional derivatives:</p><span>$$\\\\begin{cases}\\\\left[a+b\\\\left(\\\\int\\\\limits_{\\\\mathbb{R}}(|u|^{2}+|{{}_{-\\\\infty}}D_{x}^{\\\\beta}u|^{2})dx\\\\right)^{\\\\varrho-1}\\\\right]({{}_{x}}D_{\\\\infty}^{\\\\beta}({{}_{-\\\\infty}}D_{x}^{\\\\beta}u)+u)=|u|^{2^{*}_{\\\\beta}-2}u,in~\\\\mathbb{R},\\\\\\\\ u\\\\in\\\\mathbb{I}_{-}^{\\\\beta}(\\\\mathbb{R}),\\\\end{cases}$$</span><p>where <span>\\\\(\\\\beta\\\\in(0,\\\\frac{1}{2})\\\\)</span>, <span>\\\\(\\\\varrho>1\\\\)</span>, <span>\\\\({{}_{-\\\\infty}}D_{x}^{\\\\beta}u(\\\\cdot)\\\\)</span>, and <span>\\\\({{}_{x}}D_{\\\\infty}^{\\\\beta}u(\\\\cdot)\\\\)</span> denote the left and right Liouville–Weyl fractional derivatives, <span>\\\\(2_{\\\\beta}^{*}=\\\\frac{2}{1-2\\\\beta}\\\\)</span> is fractional critical Sobolev exponent <span>\\\\(a\\\\geq 0\\\\)</span> and <span>\\\\(b>0\\\\)</span>. Under suitable values of the parameters <span>\\\\(\\\\varrho\\\\)</span>, <span>\\\\(a\\\\)</span> and <span>\\\\(b\\\\)</span>, we obtain a nonexistence result of nontrivial solutions of infinitely many nontrivial solutions for the above problem.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362324700055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
where \(\beta\in(0,\frac{1}{2})\), \(\varrho>1\), \({{}_{-\infty}}D_{x}^{\beta}u(\cdot)\), and \({{}_{x}}D_{\infty}^{\beta}u(\cdot)\) denote the left and right Liouville–Weyl fractional derivatives, \(2_{\beta}^{*}=\frac{2}{1-2\beta}\) is fractional critical Sobolev exponent \(a\geq 0\) and \(b>0\). Under suitable values of the parameters \(\varrho\), \(a\) and \(b\), we obtain a nonexistence result of nontrivial solutions of infinitely many nontrivial solutions for the above problem.