流水线双共轭梯度稳定法的稳健性和准确性:比较研究

Mykhailo Havdiak, Jose I. Aliaga, Roman Iakymchuk
{"title":"流水线双共轭梯度稳定法的稳健性和准确性:比较研究","authors":"Mykhailo Havdiak, Jose I. Aliaga, Roman Iakymchuk","doi":"arxiv-2404.13216","DOIUrl":null,"url":null,"abstract":"In this article, we propose an accuracy-assuring technique for finding a\nsolution for unsymmetric linear systems. Such problems are related to different\nareas such as image processing, computer vision, and computational fluid\ndynamics. Parallel implementation of Krylov subspace methods speeds up finding\napproximate solutions for linear systems. In this context, the refined approach\nin pipelined BiCGStab enhances scalability on distributed memory machines,\nyielding to substantial speed improvements compared to the standard BiCGStab\nmethod. However, it's worth noting that the pipelined BiCGStab algorithm\nsacrifices some accuracy, which is stabilized with the residual replacement\ntechnique. This paper aims to address this issue by employing the ExBLAS-based\nreproducible approach. We validate the idea on a set of matrices from the\nSuiteSparse Matrix Collection.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness and Accuracy in Pipelined Bi-Conjugate Gradient Stabilized Method: A Comparative Study\",\"authors\":\"Mykhailo Havdiak, Jose I. Aliaga, Roman Iakymchuk\",\"doi\":\"arxiv-2404.13216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we propose an accuracy-assuring technique for finding a\\nsolution for unsymmetric linear systems. Such problems are related to different\\nareas such as image processing, computer vision, and computational fluid\\ndynamics. Parallel implementation of Krylov subspace methods speeds up finding\\napproximate solutions for linear systems. In this context, the refined approach\\nin pipelined BiCGStab enhances scalability on distributed memory machines,\\nyielding to substantial speed improvements compared to the standard BiCGStab\\nmethod. However, it's worth noting that the pipelined BiCGStab algorithm\\nsacrifices some accuracy, which is stabilized with the residual replacement\\ntechnique. This paper aims to address this issue by employing the ExBLAS-based\\nreproducible approach. We validate the idea on a set of matrices from the\\nSuiteSparse Matrix Collection.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.13216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.13216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种用于寻找非对称线性系统解的精确保证技术。这类问题涉及图像处理、计算机视觉和计算流体动力学等不同领域。克雷洛夫子空间方法的并行实施加快了寻找线性系统近似解的速度。在此背景下,流水线 BiCGStab 中的改进方法增强了在分布式内存机器上的可扩展性,与标准 BiCGStab 方法相比,速度有了大幅提高。不过,值得注意的是,流水线式 BiCGStab 算法牺牲了一定的精度,而残差替换技术可以稳定这种精度。本文旨在通过采用基于 ExBLAS 的可重现方法来解决这一问题。我们在 SuiteSparse Matrix Collection 中的一组矩阵上验证了这一想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness and Accuracy in Pipelined Bi-Conjugate Gradient Stabilized Method: A Comparative Study
In this article, we propose an accuracy-assuring technique for finding a solution for unsymmetric linear systems. Such problems are related to different areas such as image processing, computer vision, and computational fluid dynamics. Parallel implementation of Krylov subspace methods speeds up finding approximate solutions for linear systems. In this context, the refined approach in pipelined BiCGStab enhances scalability on distributed memory machines, yielding to substantial speed improvements compared to the standard BiCGStab method. However, it's worth noting that the pipelined BiCGStab algorithm sacrifices some accuracy, which is stabilized with the residual replacement technique. This paper aims to address this issue by employing the ExBLAS-based reproducible approach. We validate the idea on a set of matrices from the SuiteSparse Matrix Collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信