几何布朗运动的投资组合风险价值近似值

Pub Date : 2024-04-25 DOI:10.3103/s1068362324700067
H. Kechejian, V. K. Ohanyan, V. G. Bardakhchyan
{"title":"几何布朗运动的投资组合风险价值近似值","authors":"H. Kechejian, V. K. Ohanyan, V. G. Bardakhchyan","doi":"10.3103/s1068362324700067","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Value-at-risk (VaR) serves as a measure for assessing the risk associated with individual securities and portfolios. When calculating VaR for portfolios, the dimension of the covariance matrix increases as more securities are included. In this study, we present a solution to address the issue of dimensionality by directly computing the VaR of a portfolio using a single security, therefore requiring only one variance and one mean. Our results demonstrate that, under the assumption of Gaussian distribution, the deviation between the computed VaR and actual values is relatively small.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio Value-at-Risk Approximation for Geometric Brownian Motion\",\"authors\":\"H. Kechejian, V. K. Ohanyan, V. G. Bardakhchyan\",\"doi\":\"10.3103/s1068362324700067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Value-at-risk (VaR) serves as a measure for assessing the risk associated with individual securities and portfolios. When calculating VaR for portfolios, the dimension of the covariance matrix increases as more securities are included. In this study, we present a solution to address the issue of dimensionality by directly computing the VaR of a portfolio using a single security, therefore requiring only one variance and one mean. Our results demonstrate that, under the assumption of Gaussian distribution, the deviation between the computed VaR and actual values is relatively small.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362324700067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 风险值(VaR)是评估单个证券和投资组合相关风险的一种方法。在计算投资组合的风险值时,协方差矩阵的维度会随着证券数量的增加而增加。在本研究中,我们提出了一个解决维度问题的方案,即使用单个证券直接计算投资组合的风险价值,因此只需要一个方差和一个均值。我们的结果表明,在高斯分布假设下,计算出的风险值与实际值之间的偏差相对较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Portfolio Value-at-Risk Approximation for Geometric Brownian Motion

Abstract

Value-at-risk (VaR) serves as a measure for assessing the risk associated with individual securities and portfolios. When calculating VaR for portfolios, the dimension of the covariance matrix increases as more securities are included. In this study, we present a solution to address the issue of dimensionality by directly computing the VaR of a portfolio using a single security, therefore requiring only one variance and one mean. Our results demonstrate that, under the assumption of Gaussian distribution, the deviation between the computed VaR and actual values is relatively small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信