{"title":"几何布朗运动的投资组合风险价值近似值","authors":"H. Kechejian, V. K. Ohanyan, V. G. Bardakhchyan","doi":"10.3103/s1068362324700067","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Value-at-risk (VaR) serves as a measure for assessing the risk associated with individual securities and portfolios. When calculating VaR for portfolios, the dimension of the covariance matrix increases as more securities are included. In this study, we present a solution to address the issue of dimensionality by directly computing the VaR of a portfolio using a single security, therefore requiring only one variance and one mean. Our results demonstrate that, under the assumption of Gaussian distribution, the deviation between the computed VaR and actual values is relatively small.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio Value-at-Risk Approximation for Geometric Brownian Motion\",\"authors\":\"H. Kechejian, V. K. Ohanyan, V. G. Bardakhchyan\",\"doi\":\"10.3103/s1068362324700067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Value-at-risk (VaR) serves as a measure for assessing the risk associated with individual securities and portfolios. When calculating VaR for portfolios, the dimension of the covariance matrix increases as more securities are included. In this study, we present a solution to address the issue of dimensionality by directly computing the VaR of a portfolio using a single security, therefore requiring only one variance and one mean. Our results demonstrate that, under the assumption of Gaussian distribution, the deviation between the computed VaR and actual values is relatively small.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362324700067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324700067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Portfolio Value-at-Risk Approximation for Geometric Brownian Motion
Abstract
Value-at-risk (VaR) serves as a measure for assessing the risk associated with individual securities and portfolios. When calculating VaR for portfolios, the dimension of the covariance matrix increases as more securities are included. In this study, we present a solution to address the issue of dimensionality by directly computing the VaR of a portfolio using a single security, therefore requiring only one variance and one mean. Our results demonstrate that, under the assumption of Gaussian distribution, the deviation between the computed VaR and actual values is relatively small.