论与约瑟夫森模型相关的两个非线性微分方程系的解的性质

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
V. V. Tsegelnik
{"title":"论与约瑟夫森模型相关的两个非线性微分方程系的解的性质","authors":"V. V. Tsegelnik","doi":"10.1134/S0040577924040020","DOIUrl":null,"url":null,"abstract":"<p> We investigate the analytic properties of solutions of a system of two first-order nonlinear differential equations with an arbitrary parameter <span>\\(l\\)</span> associated with an overdamped Josephson model. We reduce this system to a system of differential equations that is equivalent to the fifth Painlevé equation with the sets of parameters </p><p> We show that the solution of the third Painlevé equation with the parameters <span>\\((-2l, 2l-2,1,-1)\\)</span> can be represented as the ratio of two linear fractional transformations of the solutions of the fifth Painlevé equation (with the parameters in the above sequence) connected by a Bäcklund transformation. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model\",\"authors\":\"V. V. Tsegelnik\",\"doi\":\"10.1134/S0040577924040020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We investigate the analytic properties of solutions of a system of two first-order nonlinear differential equations with an arbitrary parameter <span>\\\\(l\\\\)</span> associated with an overdamped Josephson model. We reduce this system to a system of differential equations that is equivalent to the fifth Painlevé equation with the sets of parameters </p><p> We show that the solution of the third Painlevé equation with the parameters <span>\\\\((-2l, 2l-2,1,-1)\\\\)</span> can be represented as the ratio of two linear fractional transformations of the solutions of the fifth Painlevé equation (with the parameters in the above sequence) connected by a Bäcklund transformation. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924040020\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924040020","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了与过阻尼约瑟夫森模型相关的带有任意参数 \(l\) 的两个一阶非线性微分方程系统解的解析性质。我们把这个系统简化为一个微分方程系统,它等价于参数集为 $$\biggl(\frac{(1-l)^2}{8}, -\frac{(1-l)^2}{8},0,-2\biggr), \; \biggl(\frac{l^2}{8}, -\frac{l^2}{8},0,-2\biggr) 的第五个潘列夫方程。$$ 我们证明,参数为 \((-2l,2l-2,1,-1)\)的第三个潘列夫方程的解可以表示为第五个潘列夫方程的解(参数为上述序列中的参数)的两个线性分数变换之比,这两个线性分数变换通过贝克隆变换连接起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the properties of solutions of a system of two nonlinear differential equations associated with the Josephson model

We investigate the analytic properties of solutions of a system of two first-order nonlinear differential equations with an arbitrary parameter \(l\) associated with an overdamped Josephson model. We reduce this system to a system of differential equations that is equivalent to the fifth Painlevé equation with the sets of parameters

We show that the solution of the third Painlevé equation with the parameters \((-2l, 2l-2,1,-1)\) can be represented as the ratio of two linear fractional transformations of the solutions of the fifth Painlevé equation (with the parameters in the above sequence) connected by a Bäcklund transformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信