q-Ary 向量的极值图论问题

Pub Date : 2024-04-24 DOI:10.1007/s00373-024-02787-4
Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"q-Ary 向量的极值图论问题","authors":"Balázs Patkós, Zsolt Tuza, Máté Vizer","doi":"10.1007/s00373-024-02787-4","DOIUrl":null,"url":null,"abstract":"<p>A <i>q</i>-graph <i>H</i> on <i>n</i> vertices is a set of vectors of length <i>n</i> with all entries from <span>\\(\\{0,1,\\dots ,q\\}\\)</span> and every vector (that we call a <i>q</i>-edge) having exactly two non-zero entries. The support of a <i>q</i>-edge <span>\\({\\textbf{x}}\\)</span> is the pair <span>\\(S_{\\textbf{x}}\\)</span> of indices of non-zero entries. We say that <i>H</i> is an <i>s</i>-copy of an ordinary graph <i>F</i> if <span>\\(|H|=|E(F)|\\)</span>, <i>F</i> is isomorphic to the graph with edge set <span>\\(\\{S_{\\textbf{x}}:{\\textbf{x}}\\in H\\}\\)</span>, and whenever <span>\\(v\\in e,e'\\in E(F)\\)</span>, the entries with index corresponding to <i>v</i> in the <i>q</i>-edges corresponding to <i>e</i> and <span>\\(e'\\)</span> sum up to at least <i>s</i>. E.g., the <i>q</i>-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number <span>\\(\\mathop {}\\!\\textrm{ex}(n,F,q,s)\\)</span> is the maximum number of <i>q</i>-edges that a <i>q</i>-graph <i>H</i> on <i>n</i> vertices can have if it does not contain any <i>s</i>-copies of <i>F</i>. In the present paper, we determine the asymptotics of <span>\\(\\mathop {}\\!\\textrm{ex}(n,F,q,q+1)\\)</span> for many graphs <i>F</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Graph Theoretic Questions for q-Ary Vectors\",\"authors\":\"Balázs Patkós, Zsolt Tuza, Máté Vizer\",\"doi\":\"10.1007/s00373-024-02787-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>q</i>-graph <i>H</i> on <i>n</i> vertices is a set of vectors of length <i>n</i> with all entries from <span>\\\\(\\\\{0,1,\\\\dots ,q\\\\}\\\\)</span> and every vector (that we call a <i>q</i>-edge) having exactly two non-zero entries. The support of a <i>q</i>-edge <span>\\\\({\\\\textbf{x}}\\\\)</span> is the pair <span>\\\\(S_{\\\\textbf{x}}\\\\)</span> of indices of non-zero entries. We say that <i>H</i> is an <i>s</i>-copy of an ordinary graph <i>F</i> if <span>\\\\(|H|=|E(F)|\\\\)</span>, <i>F</i> is isomorphic to the graph with edge set <span>\\\\(\\\\{S_{\\\\textbf{x}}:{\\\\textbf{x}}\\\\in H\\\\}\\\\)</span>, and whenever <span>\\\\(v\\\\in e,e'\\\\in E(F)\\\\)</span>, the entries with index corresponding to <i>v</i> in the <i>q</i>-edges corresponding to <i>e</i> and <span>\\\\(e'\\\\)</span> sum up to at least <i>s</i>. E.g., the <i>q</i>-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number <span>\\\\(\\\\mathop {}\\\\!\\\\textrm{ex}(n,F,q,s)\\\\)</span> is the maximum number of <i>q</i>-edges that a <i>q</i>-graph <i>H</i> on <i>n</i> vertices can have if it does not contain any <i>s</i>-copies of <i>F</i>. In the present paper, we determine the asymptotics of <span>\\\\(\\\\mathop {}\\\\!\\\\textrm{ex}(n,F,q,q+1)\\\\)</span> for many graphs <i>F</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02787-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02787-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

n 个顶点上的 q 图 H 是一个长度为 n 的向量集合,所有条目都来自 \(\{0,1,\dots ,q\}\),并且每个向量(我们称之为 q 边)都有两个非零条目。q-edge \({\textbf{x}}\)的支持是非零条目索引的一对 \(S_{\textbf{x}}\)。如果 \(|H|=|E(F)|\)、F 与边集 \(\{S_{textbf{x}}:({textbf{x}}\in H\}\), 并且只要 \(v\in e,e'\in E(F)\), 在与 e 和 \(e'\) 对应的 q 条边中与 v 对应的索引项相加至少为 s.例如q 边 (1, 3, 0, 0, 0), (0, 1, 0, 0, 3) 和 (3, 0, 0, 0, 1) 构成一个 4 三角形。图兰数 \(\mathop {}\!\textrm{ex}(n,F,q,s)\)是 n 个顶点上的 q 图 H 在不包含任何 F 的 s 副本的情况下所能拥有的最大 q 边数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extremal Graph Theoretic Questions for q-Ary Vectors

分享
查看原文
Extremal Graph Theoretic Questions for q-Ary Vectors

A q-graph H on n vertices is a set of vectors of length n with all entries from \(\{0,1,\dots ,q\}\) and every vector (that we call a q-edge) having exactly two non-zero entries. The support of a q-edge \({\textbf{x}}\) is the pair \(S_{\textbf{x}}\) of indices of non-zero entries. We say that H is an s-copy of an ordinary graph F if \(|H|=|E(F)|\), F is isomorphic to the graph with edge set \(\{S_{\textbf{x}}:{\textbf{x}}\in H\}\), and whenever \(v\in e,e'\in E(F)\), the entries with index corresponding to v in the q-edges corresponding to e and \(e'\) sum up to at least s. E.g., the q-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number \(\mathop {}\!\textrm{ex}(n,F,q,s)\) is the maximum number of q-edges that a q-graph H on n vertices can have if it does not contain any s-copies of F. In the present paper, we determine the asymptotics of \(\mathop {}\!\textrm{ex}(n,F,q,q+1)\) for many graphs F.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信