{"title":"q-Ary 向量的极值图论问题","authors":"Balázs Patkós, Zsolt Tuza, Máté Vizer","doi":"10.1007/s00373-024-02787-4","DOIUrl":null,"url":null,"abstract":"<p>A <i>q</i>-graph <i>H</i> on <i>n</i> vertices is a set of vectors of length <i>n</i> with all entries from <span>\\(\\{0,1,\\dots ,q\\}\\)</span> and every vector (that we call a <i>q</i>-edge) having exactly two non-zero entries. The support of a <i>q</i>-edge <span>\\({\\textbf{x}}\\)</span> is the pair <span>\\(S_{\\textbf{x}}\\)</span> of indices of non-zero entries. We say that <i>H</i> is an <i>s</i>-copy of an ordinary graph <i>F</i> if <span>\\(|H|=|E(F)|\\)</span>, <i>F</i> is isomorphic to the graph with edge set <span>\\(\\{S_{\\textbf{x}}:{\\textbf{x}}\\in H\\}\\)</span>, and whenever <span>\\(v\\in e,e'\\in E(F)\\)</span>, the entries with index corresponding to <i>v</i> in the <i>q</i>-edges corresponding to <i>e</i> and <span>\\(e'\\)</span> sum up to at least <i>s</i>. E.g., the <i>q</i>-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number <span>\\(\\mathop {}\\!\\textrm{ex}(n,F,q,s)\\)</span> is the maximum number of <i>q</i>-edges that a <i>q</i>-graph <i>H</i> on <i>n</i> vertices can have if it does not contain any <i>s</i>-copies of <i>F</i>. In the present paper, we determine the asymptotics of <span>\\(\\mathop {}\\!\\textrm{ex}(n,F,q,q+1)\\)</span> for many graphs <i>F</i>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"50 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Graph Theoretic Questions for q-Ary Vectors\",\"authors\":\"Balázs Patkós, Zsolt Tuza, Máté Vizer\",\"doi\":\"10.1007/s00373-024-02787-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>q</i>-graph <i>H</i> on <i>n</i> vertices is a set of vectors of length <i>n</i> with all entries from <span>\\\\(\\\\{0,1,\\\\dots ,q\\\\}\\\\)</span> and every vector (that we call a <i>q</i>-edge) having exactly two non-zero entries. The support of a <i>q</i>-edge <span>\\\\({\\\\textbf{x}}\\\\)</span> is the pair <span>\\\\(S_{\\\\textbf{x}}\\\\)</span> of indices of non-zero entries. We say that <i>H</i> is an <i>s</i>-copy of an ordinary graph <i>F</i> if <span>\\\\(|H|=|E(F)|\\\\)</span>, <i>F</i> is isomorphic to the graph with edge set <span>\\\\(\\\\{S_{\\\\textbf{x}}:{\\\\textbf{x}}\\\\in H\\\\}\\\\)</span>, and whenever <span>\\\\(v\\\\in e,e'\\\\in E(F)\\\\)</span>, the entries with index corresponding to <i>v</i> in the <i>q</i>-edges corresponding to <i>e</i> and <span>\\\\(e'\\\\)</span> sum up to at least <i>s</i>. E.g., the <i>q</i>-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number <span>\\\\(\\\\mathop {}\\\\!\\\\textrm{ex}(n,F,q,s)\\\\)</span> is the maximum number of <i>q</i>-edges that a <i>q</i>-graph <i>H</i> on <i>n</i> vertices can have if it does not contain any <i>s</i>-copies of <i>F</i>. In the present paper, we determine the asymptotics of <span>\\\\(\\\\mathop {}\\\\!\\\\textrm{ex}(n,F,q,q+1)\\\\)</span> for many graphs <i>F</i>.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02787-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02787-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
n 个顶点上的 q 图 H 是一个长度为 n 的向量集合,所有条目都来自 \(\{0,1,\dots ,q\}\),并且每个向量(我们称之为 q 边)都有两个非零条目。q-edge \({\textbf{x}}\)的支持是非零条目索引的一对 \(S_{\textbf{x}}\)。如果 \(|H|=|E(F)|\)、F 与边集 \(\{S_{textbf{x}}:({textbf{x}}\in H\}\), 并且只要 \(v\in e,e'\in E(F)\), 在与 e 和 \(e'\) 对应的 q 条边中与 v 对应的索引项相加至少为 s.例如q 边 (1, 3, 0, 0, 0), (0, 1, 0, 0, 3) 和 (3, 0, 0, 0, 1) 构成一个 4 三角形。图兰数 \(\mathop {}\!\textrm{ex}(n,F,q,s)\)是 n 个顶点上的 q 图 H 在不包含任何 F 的 s 副本的情况下所能拥有的最大 q 边数。
Extremal Graph Theoretic Questions for q-Ary Vectors
A q-graph H on n vertices is a set of vectors of length n with all entries from \(\{0,1,\dots ,q\}\) and every vector (that we call a q-edge) having exactly two non-zero entries. The support of a q-edge \({\textbf{x}}\) is the pair \(S_{\textbf{x}}\) of indices of non-zero entries. We say that H is an s-copy of an ordinary graph F if \(|H|=|E(F)|\), F is isomorphic to the graph with edge set \(\{S_{\textbf{x}}:{\textbf{x}}\in H\}\), and whenever \(v\in e,e'\in E(F)\), the entries with index corresponding to v in the q-edges corresponding to e and \(e'\) sum up to at least s. E.g., the q-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number \(\mathop {}\!\textrm{ex}(n,F,q,s)\) is the maximum number of q-edges that a q-graph H on n vertices can have if it does not contain any s-copies of F. In the present paper, we determine the asymptotics of \(\mathop {}\!\textrm{ex}(n,F,q,q+1)\) for many graphs F.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.