q-Ary 向量的极值图论问题

IF 0.6 4区 数学 Q3 MATHEMATICS
Balázs Patkós, Zsolt Tuza, Máté Vizer
{"title":"q-Ary 向量的极值图论问题","authors":"Balázs Patkós, Zsolt Tuza, Máté Vizer","doi":"10.1007/s00373-024-02787-4","DOIUrl":null,"url":null,"abstract":"<p>A <i>q</i>-graph <i>H</i> on <i>n</i> vertices is a set of vectors of length <i>n</i> with all entries from <span>\\(\\{0,1,\\dots ,q\\}\\)</span> and every vector (that we call a <i>q</i>-edge) having exactly two non-zero entries. The support of a <i>q</i>-edge <span>\\({\\textbf{x}}\\)</span> is the pair <span>\\(S_{\\textbf{x}}\\)</span> of indices of non-zero entries. We say that <i>H</i> is an <i>s</i>-copy of an ordinary graph <i>F</i> if <span>\\(|H|=|E(F)|\\)</span>, <i>F</i> is isomorphic to the graph with edge set <span>\\(\\{S_{\\textbf{x}}:{\\textbf{x}}\\in H\\}\\)</span>, and whenever <span>\\(v\\in e,e'\\in E(F)\\)</span>, the entries with index corresponding to <i>v</i> in the <i>q</i>-edges corresponding to <i>e</i> and <span>\\(e'\\)</span> sum up to at least <i>s</i>. E.g., the <i>q</i>-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number <span>\\(\\mathop {}\\!\\textrm{ex}(n,F,q,s)\\)</span> is the maximum number of <i>q</i>-edges that a <i>q</i>-graph <i>H</i> on <i>n</i> vertices can have if it does not contain any <i>s</i>-copies of <i>F</i>. In the present paper, we determine the asymptotics of <span>\\(\\mathop {}\\!\\textrm{ex}(n,F,q,q+1)\\)</span> for many graphs <i>F</i>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"50 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Graph Theoretic Questions for q-Ary Vectors\",\"authors\":\"Balázs Patkós, Zsolt Tuza, Máté Vizer\",\"doi\":\"10.1007/s00373-024-02787-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>q</i>-graph <i>H</i> on <i>n</i> vertices is a set of vectors of length <i>n</i> with all entries from <span>\\\\(\\\\{0,1,\\\\dots ,q\\\\}\\\\)</span> and every vector (that we call a <i>q</i>-edge) having exactly two non-zero entries. The support of a <i>q</i>-edge <span>\\\\({\\\\textbf{x}}\\\\)</span> is the pair <span>\\\\(S_{\\\\textbf{x}}\\\\)</span> of indices of non-zero entries. We say that <i>H</i> is an <i>s</i>-copy of an ordinary graph <i>F</i> if <span>\\\\(|H|=|E(F)|\\\\)</span>, <i>F</i> is isomorphic to the graph with edge set <span>\\\\(\\\\{S_{\\\\textbf{x}}:{\\\\textbf{x}}\\\\in H\\\\}\\\\)</span>, and whenever <span>\\\\(v\\\\in e,e'\\\\in E(F)\\\\)</span>, the entries with index corresponding to <i>v</i> in the <i>q</i>-edges corresponding to <i>e</i> and <span>\\\\(e'\\\\)</span> sum up to at least <i>s</i>. E.g., the <i>q</i>-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number <span>\\\\(\\\\mathop {}\\\\!\\\\textrm{ex}(n,F,q,s)\\\\)</span> is the maximum number of <i>q</i>-edges that a <i>q</i>-graph <i>H</i> on <i>n</i> vertices can have if it does not contain any <i>s</i>-copies of <i>F</i>. In the present paper, we determine the asymptotics of <span>\\\\(\\\\mathop {}\\\\!\\\\textrm{ex}(n,F,q,q+1)\\\\)</span> for many graphs <i>F</i>.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02787-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02787-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

n 个顶点上的 q 图 H 是一个长度为 n 的向量集合,所有条目都来自 \(\{0,1,\dots ,q\}\),并且每个向量(我们称之为 q 边)都有两个非零条目。q-edge \({\textbf{x}}\)的支持是非零条目索引的一对 \(S_{\textbf{x}}\)。如果 \(|H|=|E(F)|\)、F 与边集 \(\{S_{textbf{x}}:({textbf{x}}\in H\}\), 并且只要 \(v\in e,e'\in E(F)\), 在与 e 和 \(e'\) 对应的 q 条边中与 v 对应的索引项相加至少为 s.例如q 边 (1, 3, 0, 0, 0), (0, 1, 0, 0, 3) 和 (3, 0, 0, 0, 1) 构成一个 4 三角形。图兰数 \(\mathop {}\!\textrm{ex}(n,F,q,s)\)是 n 个顶点上的 q 图 H 在不包含任何 F 的 s 副本的情况下所能拥有的最大 q 边数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extremal Graph Theoretic Questions for q-Ary Vectors

Extremal Graph Theoretic Questions for q-Ary Vectors

A q-graph H on n vertices is a set of vectors of length n with all entries from \(\{0,1,\dots ,q\}\) and every vector (that we call a q-edge) having exactly two non-zero entries. The support of a q-edge \({\textbf{x}}\) is the pair \(S_{\textbf{x}}\) of indices of non-zero entries. We say that H is an s-copy of an ordinary graph F if \(|H|=|E(F)|\), F is isomorphic to the graph with edge set \(\{S_{\textbf{x}}:{\textbf{x}}\in H\}\), and whenever \(v\in e,e'\in E(F)\), the entries with index corresponding to v in the q-edges corresponding to e and \(e'\) sum up to at least s. E.g., the q-edges (1, 3, 0, 0, 0), (0, 1, 0, 0, 3), and (3, 0, 0, 0, 1) form a 4-triangle. The Turán number \(\mathop {}\!\textrm{ex}(n,F,q,s)\) is the maximum number of q-edges that a q-graph H on n vertices can have if it does not contain any s-copies of F. In the present paper, we determine the asymptotics of \(\mathop {}\!\textrm{ex}(n,F,q,q+1)\) for many graphs F.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信