所有维度的杨-巴克斯特方程和通用奎特门

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Pourkia
{"title":"所有维度的杨-巴克斯特方程和通用奎特门","authors":"A. Pourkia","doi":"10.1134/S0040577924040032","DOIUrl":null,"url":null,"abstract":"<p> We construct solutions of the Yang–Baxter equation in any dimension <span>\\(d\\ge 2\\)</span> by directly generalizing the previously found solutions for <span>\\(d=2\\)</span>. We equip those solutions with unitarity and entangling properties. Being unitary, they can be turned into <span>\\(2\\)</span>-qudit quantum logic gates for qudit-based systems. The entangling property enables each of those solutions, together with all <span>\\(1\\)</span>-qudit gates, to form a universal set of quantum logic gates. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yang–Baxter equation in all dimensions and universal qudit gates\",\"authors\":\"A. Pourkia\",\"doi\":\"10.1134/S0040577924040032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We construct solutions of the Yang–Baxter equation in any dimension <span>\\\\(d\\\\ge 2\\\\)</span> by directly generalizing the previously found solutions for <span>\\\\(d=2\\\\)</span>. We equip those solutions with unitarity and entangling properties. Being unitary, they can be turned into <span>\\\\(2\\\\)</span>-qudit quantum logic gates for qudit-based systems. The entangling property enables each of those solutions, together with all <span>\\\\(1\\\\)</span>-qudit gates, to form a universal set of quantum logic gates. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924040032\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924040032","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们通过直接概括之前发现的 \(d=2\) 的解来构建杨-巴克斯特方程在任意维度 \(d\ge 2\) 的解。我们使这些解具有单元性和纠缠性。由于具有单元性,它们可以转化为基于量子系统的量子逻辑门。纠缠特性使得这些解中的每一个,连同所有的(1)-量子门,构成了一组通用的量子逻辑门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yang–Baxter equation in all dimensions and universal qudit gates

We construct solutions of the Yang–Baxter equation in any dimension \(d\ge 2\) by directly generalizing the previously found solutions for \(d=2\). We equip those solutions with unitarity and entangling properties. Being unitary, they can be turned into \(2\)-qudit quantum logic gates for qudit-based systems. The entangling property enables each of those solutions, together with all \(1\)-qudit gates, to form a universal set of quantum logic gates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信