Mickaël D Chekroun, Honghu Liu, Kaushik Srinivasan and James C McWilliams
{"title":"大气动力学神经闭合的高频和罕见事件障碍","authors":"Mickaël D Chekroun, Honghu Liu, Kaushik Srinivasan and James C McWilliams","doi":"10.1088/2632-072x/ad3e59","DOIUrl":null,"url":null,"abstract":"Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"37 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The high-frequency and rare events barriers to neural closures of atmospheric dynamics\",\"authors\":\"Mickaël D Chekroun, Honghu Liu, Kaushik Srinivasan and James C McWilliams\",\"doi\":\"10.1088/2632-072x/ad3e59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/ad3e59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad3e59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The high-frequency and rare events barriers to neural closures of atmospheric dynamics
Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.