大气动力学神经闭合的高频和罕见事件障碍

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Mickaël D Chekroun, Honghu Liu, Kaushik Srinivasan and James C McWilliams
{"title":"大气动力学神经闭合的高频和罕见事件障碍","authors":"Mickaël D Chekroun, Honghu Liu, Kaushik Srinivasan and James C McWilliams","doi":"10.1088/2632-072x/ad3e59","DOIUrl":null,"url":null,"abstract":"Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"37 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The high-frequency and rare events barriers to neural closures of atmospheric dynamics\",\"authors\":\"Mickaël D Chekroun, Honghu Liu, Kaushik Srinivasan and James C McWilliams\",\"doi\":\"10.1088/2632-072x/ad3e59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.\",\"PeriodicalId\":53211,\"journal\":{\"name\":\"Journal of Physics Complexity\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-072x/ad3e59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad3e59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,利用神经网络对气候和湍流模型中的小尺度或快速过程进行参数化的兴趣激增。在这篇短文中,我们指出了这项工作中的两个基本问题。第一个问题是,由于数据采样方式的限制,神经网络在捕捉罕见事件时可能会遇到困难。第二个问题源于这些系统固有的多尺度性质。它们结合了高频成分(如惯性-重力波)和较慢的演变过程(地转运动)。这种多尺度特性给神经网络的闭合带来了巨大障碍。为了说明这些挑战,我们将重点放在大气 1980 洛伦兹模型上,它是驱动气候模型的原始方程的简化版本。这个模型是一个很有说服力的例子,因为它抓住了这些困难的本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The high-frequency and rare events barriers to neural closures of atmospheric dynamics
Recent years have seen a surge in interest for leveraging neural networks to parameterize small-scale or fast processes in climate and turbulence models. In this short paper, we point out two fundamental issues in this endeavor. The first concerns the difficulties neural networks may experience in capturing rare events due to limitations in how data is sampled. The second arises from the inherent multiscale nature of these systems. They combine high-frequency components (like inertia-gravity waves) with slower, evolving processes (geostrophic motion). This multiscale nature creates a significant hurdle for neural network closures. To illustrate these challenges, we focus on the atmospheric 1980 Lorenz model, a simplified version of the Primitive Equations that drive climate models. This model serves as a compelling example because it captures the essence of these difficulties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信