具有高栅极可调谐性的低压短沟道 MoS2 晶体管

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Stephanie E. Liu, Thomas T. Zeng, Ruiqin Wu, Vinod K. Sangwan, Mark C. Hersam
{"title":"具有高栅极可调谐性的低压短沟道 MoS2 晶体管","authors":"Stephanie E. Liu, Thomas T. Zeng, Ruiqin Wu, Vinod K. Sangwan, Mark C. Hersam","doi":"10.1557/s43578-024-01343-3","DOIUrl":null,"url":null,"abstract":"<p>Neuromorphic hardware promises to revolutionize information technology with brain-inspired parallel processing, in-memory computing, and energy-efficient implementation of artificial intelligence and machine learning. In particular, two-dimensional (2D) memtransistors enable gate-tunable non-volatile memory, bio-realistic synaptic phenomena, and atomically thin scaling. However, previously reported 2D memtransistors have not achieved low operating voltages without compromising gate-tunability. Here, we overcome this limitation by demonstrating MoS<sub>2</sub> memtransistors with short channel lengths &lt; 400 nm, low operating voltages &lt; 1 V, and high field-effect switching ratios &gt; 10<sup>4</sup> while concurrently achieving strong memristive responses. This functionality is realized by fabricating back-gated memtransistors using highly polycrystalline monolayer MoS<sub>2</sub> channels on high-κ Al<sub>2</sub>O<sub>3</sub> dielectric layers. Finite-element simulations confirm enhanced electrostatic modulation near the channel contacts, which reduces operating voltages without compromising memristive or field-effect switching. Overall, this work demonstrates a pathway for reducing the size and power consumption of 2D memtransistors as is required for ultrahigh-density integration.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":"21 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-voltage short-channel MoS2 memtransistors with high gate-tunability\",\"authors\":\"Stephanie E. Liu, Thomas T. Zeng, Ruiqin Wu, Vinod K. Sangwan, Mark C. Hersam\",\"doi\":\"10.1557/s43578-024-01343-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neuromorphic hardware promises to revolutionize information technology with brain-inspired parallel processing, in-memory computing, and energy-efficient implementation of artificial intelligence and machine learning. In particular, two-dimensional (2D) memtransistors enable gate-tunable non-volatile memory, bio-realistic synaptic phenomena, and atomically thin scaling. However, previously reported 2D memtransistors have not achieved low operating voltages without compromising gate-tunability. Here, we overcome this limitation by demonstrating MoS<sub>2</sub> memtransistors with short channel lengths &lt; 400 nm, low operating voltages &lt; 1 V, and high field-effect switching ratios &gt; 10<sup>4</sup> while concurrently achieving strong memristive responses. This functionality is realized by fabricating back-gated memtransistors using highly polycrystalline monolayer MoS<sub>2</sub> channels on high-κ Al<sub>2</sub>O<sub>3</sub> dielectric layers. Finite-element simulations confirm enhanced electrostatic modulation near the channel contacts, which reduces operating voltages without compromising memristive or field-effect switching. Overall, this work demonstrates a pathway for reducing the size and power consumption of 2D memtransistors as is required for ultrahigh-density integration.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":16306,\"journal\":{\"name\":\"Journal of Materials Research\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-024-01343-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01343-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经形态硬件有望通过受大脑启发的并行处理、内存计算以及高能效地实现人工智能和机器学习,彻底改变信息技术。其中,二维(2D)忆阻器可实现栅极可调的非易失性存储器、逼真的生物突触现象以及原子级的超薄扩展。然而,之前报道的二维瞬态晶体管无法在不影响栅极可调谐性的情况下实现低工作电压。在这里,我们克服了这一限制,展示了具有短沟道长度 400 nm、低工作电压 1 V 和高场效应开关比 104 的 MoS2 晶体管,同时实现了强大的记忆响应。这种功能是通过在高κ Al2O3 介电层上使用高度多晶单层 MoS2 沟道制造背闸式忆阻器实现的。有限元模拟证实,通道触点附近的静电调制得到了增强,从而降低了工作电压,而不会影响忆阻器或场效应开关。总之,这项工作为缩小二维瞬态晶体管的尺寸和功耗提供了一条途径,而这正是超高密度集成所需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low-voltage short-channel MoS2 memtransistors with high gate-tunability

Low-voltage short-channel MoS2 memtransistors with high gate-tunability

Neuromorphic hardware promises to revolutionize information technology with brain-inspired parallel processing, in-memory computing, and energy-efficient implementation of artificial intelligence and machine learning. In particular, two-dimensional (2D) memtransistors enable gate-tunable non-volatile memory, bio-realistic synaptic phenomena, and atomically thin scaling. However, previously reported 2D memtransistors have not achieved low operating voltages without compromising gate-tunability. Here, we overcome this limitation by demonstrating MoS2 memtransistors with short channel lengths < 400 nm, low operating voltages < 1 V, and high field-effect switching ratios > 104 while concurrently achieving strong memristive responses. This functionality is realized by fabricating back-gated memtransistors using highly polycrystalline monolayer MoS2 channels on high-κ Al2O3 dielectric layers. Finite-element simulations confirm enhanced electrostatic modulation near the channel contacts, which reduces operating voltages without compromising memristive or field-effect switching. Overall, this work demonstrates a pathway for reducing the size and power consumption of 2D memtransistors as is required for ultrahigh-density integration.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信