两区间片断仿射映射的旋转数

Pub Date : 2024-04-22 DOI:10.1007/s00010-024-01064-2
José Pedro Gaivão, Michel Laurent, Arnaldo Nogueira
{"title":"两区间片断仿射映射的旋转数","authors":"José Pedro Gaivão, Michel Laurent, Arnaldo Nogueira","doi":"10.1007/s00010-024-01064-2","DOIUrl":null,"url":null,"abstract":"<p>We study maps of the unit interval whose graph is made up of two increasing segments and which are injective in an extended sense. Such maps <span>\\(f_{\\varvec{p}}\\)</span> are parametrized by a quintuple <span>\\(\\varvec{p}\\)</span> of real numbers satisfying inequations. Viewing <span>\\(f_{\\varvec{p}}\\)</span> as a circle map, we show that it has a rotation number <span>\\(\\rho (f_{\\varvec{p}})\\)</span> and we compute <span>\\(\\rho (f_{\\varvec{p}})\\)</span> as a function of <span>\\(\\varvec{p}\\)</span> in terms of Hecke–Mahler series. As a corollary, we prove that <span>\\(\\rho (f_{\\varvec{p}})\\)</span> is a rational number when the components of <span>\\(\\varvec{p}\\)</span> are algebraic numbers.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotation number of 2-interval piecewise affine maps\",\"authors\":\"José Pedro Gaivão, Michel Laurent, Arnaldo Nogueira\",\"doi\":\"10.1007/s00010-024-01064-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study maps of the unit interval whose graph is made up of two increasing segments and which are injective in an extended sense. Such maps <span>\\\\(f_{\\\\varvec{p}}\\\\)</span> are parametrized by a quintuple <span>\\\\(\\\\varvec{p}\\\\)</span> of real numbers satisfying inequations. Viewing <span>\\\\(f_{\\\\varvec{p}}\\\\)</span> as a circle map, we show that it has a rotation number <span>\\\\(\\\\rho (f_{\\\\varvec{p}})\\\\)</span> and we compute <span>\\\\(\\\\rho (f_{\\\\varvec{p}})\\\\)</span> as a function of <span>\\\\(\\\\varvec{p}\\\\)</span> in terms of Hecke–Mahler series. As a corollary, we prove that <span>\\\\(\\\\rho (f_{\\\\varvec{p}})\\\\)</span> is a rational number when the components of <span>\\\\(\\\\varvec{p}\\\\)</span> are algebraic numbers.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01064-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01064-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究单位区间的映射,这些映射的图是由两个递增段组成的,并且在扩展意义上是注入的。这种映射的参数是满足不等式的实数五元组 \(\varvec{p}}\)。把 \(f_{varvec{p}} 看作一个圆图,我们证明它有一个旋转数 \(\rho (f_{varvec{p}}) \),我们用赫克-马勒数列计算 \(\rho (f_{varvec{p}}) \)作为 \(\varvec{p}}) 的函数。作为推论,我们证明当 \(\varvec{p}) 的分量是代数数时,\(\rho (f_{\varvec{p}}) 是有理数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rotation number of 2-interval piecewise affine maps

分享
查看原文
Rotation number of 2-interval piecewise affine maps

We study maps of the unit interval whose graph is made up of two increasing segments and which are injective in an extended sense. Such maps \(f_{\varvec{p}}\) are parametrized by a quintuple \(\varvec{p}\) of real numbers satisfying inequations. Viewing \(f_{\varvec{p}}\) as a circle map, we show that it has a rotation number \(\rho (f_{\varvec{p}})\) and we compute \(\rho (f_{\varvec{p}})\) as a function of \(\varvec{p}\) in terms of Hecke–Mahler series. As a corollary, we prove that \(\rho (f_{\varvec{p}})\) is a rational number when the components of \(\varvec{p}\) are algebraic numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信