施罗德函数式方程的所有解

Pub Date : 2024-04-27 DOI:10.1007/s00010-024-01069-x
Raymond Mortini, Rudolf Rupp
{"title":"施罗德函数式方程的所有解","authors":"Raymond Mortini, Rudolf Rupp","doi":"10.1007/s00010-024-01069-x","DOIUrl":null,"url":null,"abstract":"<p>We determine the solutions on various intervals in <span>\\([0,\\infty [\\)</span> to the functional equation <span>\\(f(x^m)=r f(x)\\)</span> for real <i>r</i> and positive <i>m</i>. Explicit formulas, involving periodic functions, are given for the set <span>\\({\\mathcal {S}}\\)</span> of all solutions. The formulas for <span>\\(r&lt;0\\)</span> are more complicated. An approach to <span>\\({\\mathcal {S}}\\)</span> with the help of the axiom of choice is also given. A special attention is laid on solutions that are continuous on <span>\\([0,\\infty [\\)</span> or on various open subintervals. We also describe solutions satisfying some asymptotic properties at the boundary of these intervals.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All solutions to a Schröder type functional equation\",\"authors\":\"Raymond Mortini, Rudolf Rupp\",\"doi\":\"10.1007/s00010-024-01069-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine the solutions on various intervals in <span>\\\\([0,\\\\infty [\\\\)</span> to the functional equation <span>\\\\(f(x^m)=r f(x)\\\\)</span> for real <i>r</i> and positive <i>m</i>. Explicit formulas, involving periodic functions, are given for the set <span>\\\\({\\\\mathcal {S}}\\\\)</span> of all solutions. The formulas for <span>\\\\(r&lt;0\\\\)</span> are more complicated. An approach to <span>\\\\({\\\\mathcal {S}}\\\\)</span> with the help of the axiom of choice is also given. A special attention is laid on solutions that are continuous on <span>\\\\([0,\\\\infty [\\\\)</span> or on various open subintervals. We also describe solutions satisfying some asymptotic properties at the boundary of these intervals.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01069-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01069-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了实数 r 和正数 m 的函数方程 \(f(x^m)=r f(x)\)在不同区间上的解([0,\infty[\))。对于所有解的集\({mathcal {S}}\),给出了涉及周期函数的明确公式。\(r<0\) 的公式更为复杂。还给出了一种借助选择公理来求解 \({\mathcal {S}}\) 的方法。我们特别关注了在\([0,\infty [\))上或各种开放子区间上连续的解。我们还描述了在这些区间边界上满足一些渐近性质的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

All solutions to a Schröder type functional equation

分享
查看原文
All solutions to a Schröder type functional equation

We determine the solutions on various intervals in \([0,\infty [\) to the functional equation \(f(x^m)=r f(x)\) for real r and positive m. Explicit formulas, involving periodic functions, are given for the set \({\mathcal {S}}\) of all solutions. The formulas for \(r<0\) are more complicated. An approach to \({\mathcal {S}}\) with the help of the axiom of choice is also given. A special attention is laid on solutions that are continuous on \([0,\infty [\) or on various open subintervals. We also describe solutions satisfying some asymptotic properties at the boundary of these intervals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信