关于图形中的完全隔离

Pub Date : 2024-04-25 DOI:10.1007/s00010-024-01057-1
Geoffrey Boyer, Wayne Goddard, Michael A. Henning
{"title":"关于图形中的完全隔离","authors":"Geoffrey Boyer, Wayne Goddard, Michael A. Henning","doi":"10.1007/s00010-024-01057-1","DOIUrl":null,"url":null,"abstract":"<p>An isolating set in a graph is a set <i>S</i> of vertices such that removing <i>S</i> and its neighborhood leaves no edge; it is total isolating if <i>S</i> induces a subgraph with no vertex of degree 0. We show that most graphs have a partition into two disjoint total isolating sets and characterize the exceptions. Using this we show that apart from the 7-cycle, every connected graph of order <span>\\(n\\ge 4\\)</span> has a total isolating set of size at most <i>n</i>/2, which is best possible.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On total isolation in graphs\",\"authors\":\"Geoffrey Boyer, Wayne Goddard, Michael A. Henning\",\"doi\":\"10.1007/s00010-024-01057-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An isolating set in a graph is a set <i>S</i> of vertices such that removing <i>S</i> and its neighborhood leaves no edge; it is total isolating if <i>S</i> induces a subgraph with no vertex of degree 0. We show that most graphs have a partition into two disjoint total isolating sets and characterize the exceptions. Using this we show that apart from the 7-cycle, every connected graph of order <span>\\\\(n\\\\ge 4\\\\)</span> has a total isolating set of size at most <i>n</i>/2, which is best possible.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01057-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01057-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图中的隔离集是这样一个顶点集 S:移除 S 及其邻域不会留下任何边;如果 S 引发了一个没有顶点度为 0 的子图,那么它就是全隔离集。 我们证明了大多数图都有一个分割成两个互不相交的全隔离集,并描述了例外情况的特征。利用这一点,我们证明除了 7 循环之外,每个阶为 \(n\ge 4\) 的连通图最多都有一个大小为 n/2 的全孤立集,这是最好的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On total isolation in graphs

分享
查看原文
On total isolation in graphs

An isolating set in a graph is a set S of vertices such that removing S and its neighborhood leaves no edge; it is total isolating if S induces a subgraph with no vertex of degree 0. We show that most graphs have a partition into two disjoint total isolating sets and characterize the exceptions. Using this we show that apart from the 7-cycle, every connected graph of order \(n\ge 4\) has a total isolating set of size at most n/2, which is best possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信