{"title":"粗糙空间上的扭曲系数及其日冕","authors":"Elisa Hartmann","doi":"10.1007/s00010-024-01061-5","DOIUrl":null,"url":null,"abstract":"<div><p>To a metric space <i>X</i> we associate a compact topological space <span>\\(\\nu '({X})\\)</span> called the corona of <i>X</i>. Then a coarse map <span>\\(f:X\\rightarrow Y\\)</span> between metric spaces is mapped to a continuous map <span>\\(\\nu '({f}):\\nu '({X})\\rightarrow \\nu '({Y})\\)</span> between coronas. Sheaf cohomology assigned to a coarse metric space is preserved and reflected by the corona functor. This work reveals new tools to analyze the Higson corona.\n</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01061-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Twisted coefficients on coarse spaces and their corona\",\"authors\":\"Elisa Hartmann\",\"doi\":\"10.1007/s00010-024-01061-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To a metric space <i>X</i> we associate a compact topological space <span>\\\\(\\\\nu '({X})\\\\)</span> called the corona of <i>X</i>. Then a coarse map <span>\\\\(f:X\\\\rightarrow Y\\\\)</span> between metric spaces is mapped to a continuous map <span>\\\\(\\\\nu '({f}):\\\\nu '({X})\\\\rightarrow \\\\nu '({Y})\\\\)</span> between coronas. Sheaf cohomology assigned to a coarse metric space is preserved and reflected by the corona functor. This work reveals new tools to analyze the Higson corona.\\n</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01061-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01061-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01061-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Twisted coefficients on coarse spaces and their corona
To a metric space X we associate a compact topological space \(\nu '({X})\) called the corona of X. Then a coarse map \(f:X\rightarrow Y\) between metric spaces is mapped to a continuous map \(\nu '({f}):\nu '({X})\rightarrow \nu '({Y})\) between coronas. Sheaf cohomology assigned to a coarse metric space is preserved and reflected by the corona functor. This work reveals new tools to analyze the Higson corona.