Manisha Devi, Jaspal Singh Aujla, Mohsen Kian, Mohammad Sal Moslehian
{"title":"$$f(A)\\sigma f(B)$$ 与 $$A\\sigma B$ 之间的矩阵不等式","authors":"Manisha Devi, Jaspal Singh Aujla, Mohsen Kian, Mohammad Sal Moslehian","doi":"10.1007/s00010-024-01059-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> and <i>B</i> be <span>\\(n\\times n\\)</span> positive definite complex matrices, let <span>\\(\\sigma \\)</span> be a matrix mean, and let <span>\\(f: [0,\\infty )\\rightarrow [0,\\infty )\\)</span> be a differentiable convex function with <span>\\(f(0)=0\\)</span>. We prove that </p><span>$$\\begin{aligned} f^{\\prime }(0)(A \\sigma B)\\le \\frac{f(m)}{m}(A\\sigma B)\\le f(A)\\sigma f(B)\\le \\frac{f(M)}{M}(A\\sigma B)\\le f^{\\prime }(M)(A\\sigma B), \\end{aligned}$$</span><p>where <i>m</i> represents the smallest eigenvalues of <i>A</i> and <i>B</i> and <i>M</i> represents the largest eigenvalues of <i>A</i> and <i>B</i>. If <i>f</i> is differentiable and concave, then the reverse inequalities hold. We use our result to improve some known subadditivity inequalities involving unitarily invariant norms under certain mild conditions. In particular, if <i>f</i>(<i>x</i>)/<i>x</i> is increasing, then </p><span>$$\\begin{aligned} |||f(A)+f(B)|||\\le \\frac{f(M)}{M} |||A+B|||\\le |||f(A+B)||| \\end{aligned}$$</span><p>holds for all <i>A</i> and <i>B</i> with <span>\\(M\\le A+B\\)</span>. Furthermore, we apply our results to explore some related inequalities. As an application, we present a generalization of Minkowski’s determinant inequality.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix inequalities between $$f(A)\\\\sigma f(B)$$ and $$A\\\\sigma B$$\",\"authors\":\"Manisha Devi, Jaspal Singh Aujla, Mohsen Kian, Mohammad Sal Moslehian\",\"doi\":\"10.1007/s00010-024-01059-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>A</i> and <i>B</i> be <span>\\\\(n\\\\times n\\\\)</span> positive definite complex matrices, let <span>\\\\(\\\\sigma \\\\)</span> be a matrix mean, and let <span>\\\\(f: [0,\\\\infty )\\\\rightarrow [0,\\\\infty )\\\\)</span> be a differentiable convex function with <span>\\\\(f(0)=0\\\\)</span>. We prove that </p><span>$$\\\\begin{aligned} f^{\\\\prime }(0)(A \\\\sigma B)\\\\le \\\\frac{f(m)}{m}(A\\\\sigma B)\\\\le f(A)\\\\sigma f(B)\\\\le \\\\frac{f(M)}{M}(A\\\\sigma B)\\\\le f^{\\\\prime }(M)(A\\\\sigma B), \\\\end{aligned}$$</span><p>where <i>m</i> represents the smallest eigenvalues of <i>A</i> and <i>B</i> and <i>M</i> represents the largest eigenvalues of <i>A</i> and <i>B</i>. If <i>f</i> is differentiable and concave, then the reverse inequalities hold. We use our result to improve some known subadditivity inequalities involving unitarily invariant norms under certain mild conditions. In particular, if <i>f</i>(<i>x</i>)/<i>x</i> is increasing, then </p><span>$$\\\\begin{aligned} |||f(A)+f(B)|||\\\\le \\\\frac{f(M)}{M} |||A+B|||\\\\le |||f(A+B)||| \\\\end{aligned}$$</span><p>holds for all <i>A</i> and <i>B</i> with <span>\\\\(M\\\\le A+B\\\\)</span>. Furthermore, we apply our results to explore some related inequalities. As an application, we present a generalization of Minkowski’s determinant inequality.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01059-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01059-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 A 和 B 是(n 次 n)正定复矩阵,让(\sigma \)是一个矩阵均值,让(f: [0,\infty )\rightarrow [0,\infty )\) 是一个可微凸函数,且(f(0)=0)。我们证明 $$\begin{aligned} f^{prime }(0)(A\sigma B)\le f^{f(m)}{m}(A\sigma B)\le f(A)\sigma f(B)\le f^{f(M)}{M}(A\sigma B)\le f^{prime }(M)(A\sigma B)、\end{aligned}$$其中 m 代表 A 和 B 的最小特征值,M 代表 A 和 B 的最大特征值。如果 f 是可微且凹的,则反向不等式成立。我们利用我们的结果改进了一些已知的、在某些温和条件下涉及单位不变规范的次等不等式。特别是,如果 f(x)/x 是递增的,那么 $$\begin{aligned}|||f(A)+f(B)|||le \frac{f(M)}{M}|||A+B||||le ||f(A+B)||| \end{aligned}$$holds for all A and B with \(M\le A+B\)。此外,我们还应用我们的结果探讨了一些相关的不等式。作为应用,我们提出了闵科夫斯基行列式不等式的一般化。
Matrix inequalities between $$f(A)\sigma f(B)$$ and $$A\sigma B$$
Let A and B be \(n\times n\) positive definite complex matrices, let \(\sigma \) be a matrix mean, and let \(f: [0,\infty )\rightarrow [0,\infty )\) be a differentiable convex function with \(f(0)=0\). We prove that
where m represents the smallest eigenvalues of A and B and M represents the largest eigenvalues of A and B. If f is differentiable and concave, then the reverse inequalities hold. We use our result to improve some known subadditivity inequalities involving unitarily invariant norms under certain mild conditions. In particular, if f(x)/x is increasing, then
holds for all A and B with \(M\le A+B\). Furthermore, we apply our results to explore some related inequalities. As an application, we present a generalization of Minkowski’s determinant inequality.