Manisha Devi, Jaspal Singh Aujla, Mohsen Kian, Mohammad Sal Moslehian
{"title":"$$f(A)\\sigma f(B)$$ 与 $$A\\sigma B$ 之间的矩阵不等式","authors":"Manisha Devi, Jaspal Singh Aujla, Mohsen Kian, Mohammad Sal Moslehian","doi":"10.1007/s00010-024-01059-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> and <i>B</i> be <span>\\(n\\times n\\)</span> positive definite complex matrices, let <span>\\(\\sigma \\)</span> be a matrix mean, and let <span>\\(f: [0,\\infty )\\rightarrow [0,\\infty )\\)</span> be a differentiable convex function with <span>\\(f(0)=0\\)</span>. We prove that </p><span>$$\\begin{aligned} f^{\\prime }(0)(A \\sigma B)\\le \\frac{f(m)}{m}(A\\sigma B)\\le f(A)\\sigma f(B)\\le \\frac{f(M)}{M}(A\\sigma B)\\le f^{\\prime }(M)(A\\sigma B), \\end{aligned}$$</span><p>where <i>m</i> represents the smallest eigenvalues of <i>A</i> and <i>B</i> and <i>M</i> represents the largest eigenvalues of <i>A</i> and <i>B</i>. If <i>f</i> is differentiable and concave, then the reverse inequalities hold. We use our result to improve some known subadditivity inequalities involving unitarily invariant norms under certain mild conditions. In particular, if <i>f</i>(<i>x</i>)/<i>x</i> is increasing, then </p><span>$$\\begin{aligned} |||f(A)+f(B)|||\\le \\frac{f(M)}{M} |||A+B|||\\le |||f(A+B)||| \\end{aligned}$$</span><p>holds for all <i>A</i> and <i>B</i> with <span>\\(M\\le A+B\\)</span>. Furthermore, we apply our results to explore some related inequalities. As an application, we present a generalization of Minkowski’s determinant inequality.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"67 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix inequalities between $$f(A)\\\\sigma f(B)$$ and $$A\\\\sigma B$$\",\"authors\":\"Manisha Devi, Jaspal Singh Aujla, Mohsen Kian, Mohammad Sal Moslehian\",\"doi\":\"10.1007/s00010-024-01059-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>A</i> and <i>B</i> be <span>\\\\(n\\\\times n\\\\)</span> positive definite complex matrices, let <span>\\\\(\\\\sigma \\\\)</span> be a matrix mean, and let <span>\\\\(f: [0,\\\\infty )\\\\rightarrow [0,\\\\infty )\\\\)</span> be a differentiable convex function with <span>\\\\(f(0)=0\\\\)</span>. We prove that </p><span>$$\\\\begin{aligned} f^{\\\\prime }(0)(A \\\\sigma B)\\\\le \\\\frac{f(m)}{m}(A\\\\sigma B)\\\\le f(A)\\\\sigma f(B)\\\\le \\\\frac{f(M)}{M}(A\\\\sigma B)\\\\le f^{\\\\prime }(M)(A\\\\sigma B), \\\\end{aligned}$$</span><p>where <i>m</i> represents the smallest eigenvalues of <i>A</i> and <i>B</i> and <i>M</i> represents the largest eigenvalues of <i>A</i> and <i>B</i>. If <i>f</i> is differentiable and concave, then the reverse inequalities hold. We use our result to improve some known subadditivity inequalities involving unitarily invariant norms under certain mild conditions. In particular, if <i>f</i>(<i>x</i>)/<i>x</i> is increasing, then </p><span>$$\\\\begin{aligned} |||f(A)+f(B)|||\\\\le \\\\frac{f(M)}{M} |||A+B|||\\\\le |||f(A+B)||| \\\\end{aligned}$$</span><p>holds for all <i>A</i> and <i>B</i> with <span>\\\\(M\\\\le A+B\\\\)</span>. Furthermore, we apply our results to explore some related inequalities. As an application, we present a generalization of Minkowski’s determinant inequality.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01059-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01059-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 A 和 B 是(n 次 n)正定复矩阵,让(\sigma \)是一个矩阵均值,让(f: [0,\infty )\rightarrow [0,\infty )\) 是一个可微凸函数,且(f(0)=0)。我们证明 $$\begin{aligned} f^{prime }(0)(A\sigma B)\le f^{f(m)}{m}(A\sigma B)\le f(A)\sigma f(B)\le f^{f(M)}{M}(A\sigma B)\le f^{prime }(M)(A\sigma B)、\end{aligned}$$其中 m 代表 A 和 B 的最小特征值,M 代表 A 和 B 的最大特征值。如果 f 是可微且凹的,则反向不等式成立。我们利用我们的结果改进了一些已知的、在某些温和条件下涉及单位不变规范的次等不等式。特别是,如果 f(x)/x 是递增的,那么 $$\begin{aligned}|||f(A)+f(B)|||le \frac{f(M)}{M}|||A+B||||le ||f(A+B)||| \end{aligned}$$holds for all A and B with \(M\le A+B\)。此外,我们还应用我们的结果探讨了一些相关的不等式。作为应用,我们提出了闵科夫斯基行列式不等式的一般化。
Matrix inequalities between $$f(A)\sigma f(B)$$ and $$A\sigma B$$
Let A and B be \(n\times n\) positive definite complex matrices, let \(\sigma \) be a matrix mean, and let \(f: [0,\infty )\rightarrow [0,\infty )\) be a differentiable convex function with \(f(0)=0\). We prove that
where m represents the smallest eigenvalues of A and B and M represents the largest eigenvalues of A and B. If f is differentiable and concave, then the reverse inequalities hold. We use our result to improve some known subadditivity inequalities involving unitarily invariant norms under certain mild conditions. In particular, if f(x)/x is increasing, then
holds for all A and B with \(M\le A+B\). Furthermore, we apply our results to explore some related inequalities. As an application, we present a generalization of Minkowski’s determinant inequality.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.