群的积分二

IF 0.8 2区 数学 Q2 MATHEMATICS
João Araújo, Peter J. Cameron, Carlo Casolo, Francesco Matucci, Claudio Quadrelli
{"title":"群的积分二","authors":"João Araújo, Peter J. Cameron, Carlo Casolo, Francesco Matucci, Claudio Quadrelli","doi":"10.1007/s11856-024-2610-4","DOIUrl":null,"url":null,"abstract":"<p>An integral of a group <i>G</i> is a group <i>H</i> whose derived group (commutator subgroup) is isomorphic to <i>G</i>. This paper continues the investigation on integrals of groups started in the work [1]. We study:\n</p><ul>\n<li>\n<p>A sufficient condition for a bound on the order of an integral for a finite integrable group (Theorem 2.1) and a necessary condition for a group to be integrable (Theorem 3.2).</p>\n</li>\n<li>\n<p>The existence of integrals that are <i>p</i>-groups for abelian <i>p</i>-groups, and of nilpotent integrals for all abelian groups (Theorem 4.1).</p>\n</li>\n<li>\n<p>Integrals of (finite or infinite) abelian groups, including nilpotent integrals, groups with finite index in some integral, periodic groups, torsion-free groups and finitely generated groups (Section 5).</p>\n</li>\n<li>\n<p>The variety of integrals of groups from a given variety, varieties of integrable groups and classes of groups whose integrals (when they exist) still belong to such a class (Sections 6 and 7).</p>\n</li>\n<li>\n<p>Integrals of profinite groups and a characterization for integrability for finitely generated profinite centreless groups (Section 8.1).</p>\n</li>\n<li>\n<p>Integrals of Cartesian products, which are then used to construct examples of integrable profinite groups without a profinite integral (Section 8.2).</p>\n</li>\n</ul><p>We end the paper with a number of open problems.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrals of groups. II\",\"authors\":\"João Araújo, Peter J. Cameron, Carlo Casolo, Francesco Matucci, Claudio Quadrelli\",\"doi\":\"10.1007/s11856-024-2610-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An integral of a group <i>G</i> is a group <i>H</i> whose derived group (commutator subgroup) is isomorphic to <i>G</i>. This paper continues the investigation on integrals of groups started in the work [1]. We study:\\n</p><ul>\\n<li>\\n<p>A sufficient condition for a bound on the order of an integral for a finite integrable group (Theorem 2.1) and a necessary condition for a group to be integrable (Theorem 3.2).</p>\\n</li>\\n<li>\\n<p>The existence of integrals that are <i>p</i>-groups for abelian <i>p</i>-groups, and of nilpotent integrals for all abelian groups (Theorem 4.1).</p>\\n</li>\\n<li>\\n<p>Integrals of (finite or infinite) abelian groups, including nilpotent integrals, groups with finite index in some integral, periodic groups, torsion-free groups and finitely generated groups (Section 5).</p>\\n</li>\\n<li>\\n<p>The variety of integrals of groups from a given variety, varieties of integrable groups and classes of groups whose integrals (when they exist) still belong to such a class (Sections 6 and 7).</p>\\n</li>\\n<li>\\n<p>Integrals of profinite groups and a characterization for integrability for finitely generated profinite centreless groups (Section 8.1).</p>\\n</li>\\n<li>\\n<p>Integrals of Cartesian products, which are then used to construct examples of integrable profinite groups without a profinite integral (Section 8.2).</p>\\n</li>\\n</ul><p>We end the paper with a number of open problems.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2610-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2610-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

群 G 的积分是其导出群(换元子群)与 G 同构的群 H。我们研究了:有限可积分群积分阶约束的充分条件(定理 2.1)和群可积分的必要条件(定理 3.2).对于无性 p 群,存在 p 群积分;对于所有无性群,存在无性积分(定理 4.1).1).(有限或无限)无性群的积分,包括零能积分、在某些积分中具有有限指数的群、周期群、无扭群和有限生成群(第 5 节)。笛卡尔积的积分,然后用它来构造无笛卡尔积分的可积分笛卡尔群的例子(第 8.2 节)。最后,我们以一些开放问题结束本文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrals of groups. II

An integral of a group G is a group H whose derived group (commutator subgroup) is isomorphic to G. This paper continues the investigation on integrals of groups started in the work [1]. We study:

  • A sufficient condition for a bound on the order of an integral for a finite integrable group (Theorem 2.1) and a necessary condition for a group to be integrable (Theorem 3.2).

  • The existence of integrals that are p-groups for abelian p-groups, and of nilpotent integrals for all abelian groups (Theorem 4.1).

  • Integrals of (finite or infinite) abelian groups, including nilpotent integrals, groups with finite index in some integral, periodic groups, torsion-free groups and finitely generated groups (Section 5).

  • The variety of integrals of groups from a given variety, varieties of integrable groups and classes of groups whose integrals (when they exist) still belong to such a class (Sections 6 and 7).

  • Integrals of profinite groups and a characterization for integrability for finitely generated profinite centreless groups (Section 8.1).

  • Integrals of Cartesian products, which are then used to construct examples of integrable profinite groups without a profinite integral (Section 8.2).

We end the paper with a number of open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信