{"title":"有两个共轭类 p 元素的有限群中的 p-Brauer 字符边界","authors":"Nguyen Ngoc Hung, Benjamin Sambale, Pham Huu Tiep","doi":"10.1007/s11856-024-2613-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>k</i>(<i>B</i><sub>0</sub>) and <i>l</i>(<i>B</i><sub>0</sub>) respectively denote the number of ordinary and <i>p</i>-Brauer irreducible characters in the principal block <i>B</i><sub>0</sub> of a finite group <i>G</i>. We prove that, if <i>k</i>(<i>B</i><sub>0</sub>)−<i>l</i>(<i>B</i><sub>0</sub>) = 1, then <i>l</i>(<i>B</i><sub>0</sub>) ≥ <i>p</i> − 1 or else <i>p</i> = 11 and <i>l</i>(<i>B</i><sub>0</sub>) = 9. This follows from a more general result that for every finite group <i>G</i> in which all non-trivial <i>p</i>-elements are conjugate, <i>l</i>(<i>B</i><sub>0</sub>) ≥ <i>p</i> − 1 or else <i>p</i> = 11 and <span>\\(G/{{\\bf{O}}_{{p^\\prime }}}(G) \\cong C_{11}^2\\, \\rtimes\\,{\\rm{SL}}(2,5)\\)</span>. These results are useful in the study of principal blocks with few characters.</p><p>We propose that, in every finite group <i>G</i> of order divisible by <i>p</i>, the number of irreducible Brauer characters in the principal <i>p</i>-block of <i>G</i> is always at least <span>\\(2\\sqrt {p - 1} + 1 - {k_p}(G)\\)</span>, where <i>k</i><sub><i>p</i></sub>(<i>G</i>) is the number of conjugacy classes of <i>p</i>-elements of <i>G</i>. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of <i>p</i>-regular classes in finite groups.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding p-Brauer characters in finite groups with two conjugacy classes of p-elements\",\"authors\":\"Nguyen Ngoc Hung, Benjamin Sambale, Pham Huu Tiep\",\"doi\":\"10.1007/s11856-024-2613-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>k</i>(<i>B</i><sub>0</sub>) and <i>l</i>(<i>B</i><sub>0</sub>) respectively denote the number of ordinary and <i>p</i>-Brauer irreducible characters in the principal block <i>B</i><sub>0</sub> of a finite group <i>G</i>. We prove that, if <i>k</i>(<i>B</i><sub>0</sub>)−<i>l</i>(<i>B</i><sub>0</sub>) = 1, then <i>l</i>(<i>B</i><sub>0</sub>) ≥ <i>p</i> − 1 or else <i>p</i> = 11 and <i>l</i>(<i>B</i><sub>0</sub>) = 9. This follows from a more general result that for every finite group <i>G</i> in which all non-trivial <i>p</i>-elements are conjugate, <i>l</i>(<i>B</i><sub>0</sub>) ≥ <i>p</i> − 1 or else <i>p</i> = 11 and <span>\\\\(G/{{\\\\bf{O}}_{{p^\\\\prime }}}(G) \\\\cong C_{11}^2\\\\, \\\\rtimes\\\\,{\\\\rm{SL}}(2,5)\\\\)</span>. These results are useful in the study of principal blocks with few characters.</p><p>We propose that, in every finite group <i>G</i> of order divisible by <i>p</i>, the number of irreducible Brauer characters in the principal <i>p</i>-block of <i>G</i> is always at least <span>\\\\(2\\\\sqrt {p - 1} + 1 - {k_p}(G)\\\\)</span>, where <i>k</i><sub><i>p</i></sub>(<i>G</i>) is the number of conjugacy classes of <i>p</i>-elements of <i>G</i>. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of <i>p</i>-regular classes in finite groups.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2613-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2613-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,如果 k(B0)-l(B0) = 1,那么 l(B0) ≥ p - 1,否则 p = 11,l(B0) = 9。这源于一个更普遍的结果,即对于所有非三维 p 元素共轭的有限群 G,l(B0) ≥ p - 1,否则 p = 11,并且 \(G/{{bf{O}}_{{p^\prime }}}(G) \cong C_{11}^2\, \rtimes\,{\rm{SL}}(2,5)\).我们提出,在每一个阶可被 p 整除的有限群 G 中,G 的主 p 块中不可还原的布劳尔字符数总是至少为 \(2\sqrt {p - 1} + 1 - {k_p}}(2,5}).+ 1 - {k_p}(G)\), 其中 kp(G) 是 G 中 p 元素的共轭类的数目。
Bounding p-Brauer characters in finite groups with two conjugacy classes of p-elements
Let k(B0) and l(B0) respectively denote the number of ordinary and p-Brauer irreducible characters in the principal block B0 of a finite group G. We prove that, if k(B0)−l(B0) = 1, then l(B0) ≥ p − 1 or else p = 11 and l(B0) = 9. This follows from a more general result that for every finite group G in which all non-trivial p-elements are conjugate, l(B0) ≥ p − 1 or else p = 11 and \(G/{{\bf{O}}_{{p^\prime }}}(G) \cong C_{11}^2\, \rtimes\,{\rm{SL}}(2,5)\). These results are useful in the study of principal blocks with few characters.
We propose that, in every finite group G of order divisible by p, the number of irreducible Brauer characters in the principal p-block of G is always at least \(2\sqrt {p - 1} + 1 - {k_p}(G)\), where kp(G) is the number of conjugacy classes of p-elements of G. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of p-regular classes in finite groups.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.