有两个共轭类 p 元素的有限群中的 p-Brauer 字符边界

IF 0.8 2区 数学 Q2 MATHEMATICS
Nguyen Ngoc Hung, Benjamin Sambale, Pham Huu Tiep
{"title":"有两个共轭类 p 元素的有限群中的 p-Brauer 字符边界","authors":"Nguyen Ngoc Hung, Benjamin Sambale, Pham Huu Tiep","doi":"10.1007/s11856-024-2613-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>k</i>(<i>B</i><sub>0</sub>) and <i>l</i>(<i>B</i><sub>0</sub>) respectively denote the number of ordinary and <i>p</i>-Brauer irreducible characters in the principal block <i>B</i><sub>0</sub> of a finite group <i>G</i>. We prove that, if <i>k</i>(<i>B</i><sub>0</sub>)−<i>l</i>(<i>B</i><sub>0</sub>) = 1, then <i>l</i>(<i>B</i><sub>0</sub>) ≥ <i>p</i> − 1 or else <i>p</i> = 11 and <i>l</i>(<i>B</i><sub>0</sub>) = 9. This follows from a more general result that for every finite group <i>G</i> in which all non-trivial <i>p</i>-elements are conjugate, <i>l</i>(<i>B</i><sub>0</sub>) ≥ <i>p</i> − 1 or else <i>p</i> = 11 and <span>\\(G/{{\\bf{O}}_{{p^\\prime }}}(G) \\cong C_{11}^2\\, \\rtimes\\,{\\rm{SL}}(2,5)\\)</span>. These results are useful in the study of principal blocks with few characters.</p><p>We propose that, in every finite group <i>G</i> of order divisible by <i>p</i>, the number of irreducible Brauer characters in the principal <i>p</i>-block of <i>G</i> is always at least <span>\\(2\\sqrt {p - 1} + 1 - {k_p}(G)\\)</span>, where <i>k</i><sub><i>p</i></sub>(<i>G</i>) is the number of conjugacy classes of <i>p</i>-elements of <i>G</i>. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of <i>p</i>-regular classes in finite groups.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding p-Brauer characters in finite groups with two conjugacy classes of p-elements\",\"authors\":\"Nguyen Ngoc Hung, Benjamin Sambale, Pham Huu Tiep\",\"doi\":\"10.1007/s11856-024-2613-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>k</i>(<i>B</i><sub>0</sub>) and <i>l</i>(<i>B</i><sub>0</sub>) respectively denote the number of ordinary and <i>p</i>-Brauer irreducible characters in the principal block <i>B</i><sub>0</sub> of a finite group <i>G</i>. We prove that, if <i>k</i>(<i>B</i><sub>0</sub>)−<i>l</i>(<i>B</i><sub>0</sub>) = 1, then <i>l</i>(<i>B</i><sub>0</sub>) ≥ <i>p</i> − 1 or else <i>p</i> = 11 and <i>l</i>(<i>B</i><sub>0</sub>) = 9. This follows from a more general result that for every finite group <i>G</i> in which all non-trivial <i>p</i>-elements are conjugate, <i>l</i>(<i>B</i><sub>0</sub>) ≥ <i>p</i> − 1 or else <i>p</i> = 11 and <span>\\\\(G/{{\\\\bf{O}}_{{p^\\\\prime }}}(G) \\\\cong C_{11}^2\\\\, \\\\rtimes\\\\,{\\\\rm{SL}}(2,5)\\\\)</span>. These results are useful in the study of principal blocks with few characters.</p><p>We propose that, in every finite group <i>G</i> of order divisible by <i>p</i>, the number of irreducible Brauer characters in the principal <i>p</i>-block of <i>G</i> is always at least <span>\\\\(2\\\\sqrt {p - 1} + 1 - {k_p}(G)\\\\)</span>, where <i>k</i><sub><i>p</i></sub>(<i>G</i>) is the number of conjugacy classes of <i>p</i>-elements of <i>G</i>. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of <i>p</i>-regular classes in finite groups.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2613-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2613-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 k(B0)-l(B0) = 1,那么 l(B0) ≥ p - 1,否则 p = 11,l(B0) = 9。这源于一个更普遍的结果,即对于所有非三维 p 元素共轭的有限群 G,l(B0) ≥ p - 1,否则 p = 11,并且 \(G/{{bf{O}}_{{p^\prime }}}(G) \cong C_{11}^2\, \rtimes\,{\rm{SL}}(2,5)\).我们提出,在每一个阶可被 p 整除的有限群 G 中,G 的主 p 块中不可还原的布劳尔字符数总是至少为 \(2\sqrt {p - 1} + 1 - {k_p}}(2,5}).+ 1 - {k_p}(G)\), 其中 kp(G) 是 G 中 p 元素的共轭类的数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding p-Brauer characters in finite groups with two conjugacy classes of p-elements

Let k(B0) and l(B0) respectively denote the number of ordinary and p-Brauer irreducible characters in the principal block B0 of a finite group G. We prove that, if k(B0)−l(B0) = 1, then l(B0) ≥ p − 1 or else p = 11 and l(B0) = 9. This follows from a more general result that for every finite group G in which all non-trivial p-elements are conjugate, l(B0) ≥ p − 1 or else p = 11 and \(G/{{\bf{O}}_{{p^\prime }}}(G) \cong C_{11}^2\, \rtimes\,{\rm{SL}}(2,5)\). These results are useful in the study of principal blocks with few characters.

We propose that, in every finite group G of order divisible by p, the number of irreducible Brauer characters in the principal p-block of G is always at least \(2\sqrt {p - 1} + 1 - {k_p}(G)\), where kp(G) is the number of conjugacy classes of p-elements of G. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of p-regular classes in finite groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信