在仿射方案的茎上粘合紧凑生成的 t 结构

IF 0.8 2区 数学 Q2 MATHEMATICS
Michal Hrbek, Jiangsheng Hu, Rongmin Zhu
{"title":"在仿射方案的茎上粘合紧凑生成的 t 结构","authors":"Michal Hrbek, Jiangsheng Hu, Rongmin Zhu","doi":"10.1007/s11856-024-2611-3","DOIUrl":null,"url":null,"abstract":"<p>We show that compactly generated t-structures in the derived category of a commutative ring <i>R</i> are in a bijection with certain families of compactly generated t-structures over the local rings <span>\\(R_{\\frak{m}}\\)</span> where <span>\\(\\frak{m}\\)</span> runs through the maximal ideals in the Zariski spectrum Spec(<i>R</i>). The families are precisely those satisfying a gluing condition for the associated sequence of Thomason subsets of Spec(<i>R</i>). As one application, we show that the compact generation of a homotopically smashing t-structure can be checked locally over localizations at maximal ideals. In combination with a result due to Balmer and Favi, we conclude that the ⊗-Telescope Conjecture for a quasi-coherent and quasi-separated scheme is a stalk-local property. Furthermore, we generalize the results of Trlifaj and Şahinkaya and establish an explicit bijection between cosilting objects of cofinite type over <i>R</i> and compatible families of cosilting objects of cofinite type over all localizations <span>\\(R_{\\frak{m}}\\)</span> at maximal primes.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":"67 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gluing compactly generated t-structures over stalks of affine schemes\",\"authors\":\"Michal Hrbek, Jiangsheng Hu, Rongmin Zhu\",\"doi\":\"10.1007/s11856-024-2611-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that compactly generated t-structures in the derived category of a commutative ring <i>R</i> are in a bijection with certain families of compactly generated t-structures over the local rings <span>\\\\(R_{\\\\frak{m}}\\\\)</span> where <span>\\\\(\\\\frak{m}\\\\)</span> runs through the maximal ideals in the Zariski spectrum Spec(<i>R</i>). The families are precisely those satisfying a gluing condition for the associated sequence of Thomason subsets of Spec(<i>R</i>). As one application, we show that the compact generation of a homotopically smashing t-structure can be checked locally over localizations at maximal ideals. In combination with a result due to Balmer and Favi, we conclude that the ⊗-Telescope Conjecture for a quasi-coherent and quasi-separated scheme is a stalk-local property. Furthermore, we generalize the results of Trlifaj and Şahinkaya and establish an explicit bijection between cosilting objects of cofinite type over <i>R</i> and compatible families of cosilting objects of cofinite type over all localizations <span>\\\\(R_{\\\\frak{m}}\\\\)</span> at maximal primes.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2611-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2611-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明在交换环 R 的派生类中紧凑生成的 t 结构与局部环 \(R_{/frak{m}}/)上紧凑生成的 t 结构的某些族是双射的,其中 \(\frak{m}/)贯穿扎里斯基谱 Spec(R) 中的最大理想。这些族恰恰是满足 Spec(R) 的托马森子集相关序列的胶合条件的族。作为应用之一,我们证明了同向粉碎 t 结构的紧凑生成可以通过最大理想局部检验。结合巴尔默和法维的一个结果,我们得出结论:准相干和准分离方案的⊗-望远镜猜想是一个柄局部性质。此外,我们还推广了特里法伊(Trlifaj)和沙欣卡亚(Şahinkaya)的结果,并在 R 上的共穷型共穷对象与最大素数处的所有局部化 \(R_{/frak{m}}/)上的共穷型共穷对象的兼容族之间建立了明确的双射关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gluing compactly generated t-structures over stalks of affine schemes

We show that compactly generated t-structures in the derived category of a commutative ring R are in a bijection with certain families of compactly generated t-structures over the local rings \(R_{\frak{m}}\) where \(\frak{m}\) runs through the maximal ideals in the Zariski spectrum Spec(R). The families are precisely those satisfying a gluing condition for the associated sequence of Thomason subsets of Spec(R). As one application, we show that the compact generation of a homotopically smashing t-structure can be checked locally over localizations at maximal ideals. In combination with a result due to Balmer and Favi, we conclude that the ⊗-Telescope Conjecture for a quasi-coherent and quasi-separated scheme is a stalk-local property. Furthermore, we generalize the results of Trlifaj and Şahinkaya and establish an explicit bijection between cosilting objects of cofinite type over R and compatible families of cosilting objects of cofinite type over all localizations \(R_{\frak{m}}\) at maximal primes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信