乘法算术函数和广义尤文斯量度

IF 0.8 2区 数学 Q2 MATHEMATICS
Dor Elboim, Ofir Gorodetsky
{"title":"乘法算术函数和广义尤文斯量度","authors":"Dor Elboim, Ofir Gorodetsky","doi":"10.1007/s11856-024-2609-x","DOIUrl":null,"url":null,"abstract":"<p>Random integers, sampled uniformly from [1, <i>x</i>], share similarities with random permutations, sampled uniformly from <i>S</i><sub><i>n</i></sub>. These similarities include the Erdős–Kac theorem on the distribution of the number of prime factors of a random integer, and Billingsley’s theorem on the largest prime factors of a random integer. In this paper we extend this analogy to non-uniform distributions.</p><p>Given a multiplicative function <i>α</i>: ℕ → ℝ<sub>≥0</sub>, one may associate with it a measure on the integers in [1, <i>x</i>], where <i>n</i> is sampled with probability proportional to the value <i>α</i>(<i>n</i>). Analogously, given a sequence {<i>θ</i><sub><i>i</i></sub>}<sub><i>i</i>≥1</sub> of non-negative reals, one may associate with it a measure on <i>S</i><sub><i>n</i></sub> that assigns to a permutation a probability proportional to a product of weights over the cycles of the permutation. This measure is known as the generalized Ewens measure.</p><p>We study the case where the mean value of <i>α</i> over primes tends to some positive <i>θ</i>, as well as the weights <i>α</i>(<i>p</i>) ≈ (log <i>p</i>)<sup><i>γ</i></sup>. In both cases, we obtain results in the integer setting which are in agreement with those in the permutation setting.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative arithmetic functions and the generalized Ewens measure\",\"authors\":\"Dor Elboim, Ofir Gorodetsky\",\"doi\":\"10.1007/s11856-024-2609-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Random integers, sampled uniformly from [1, <i>x</i>], share similarities with random permutations, sampled uniformly from <i>S</i><sub><i>n</i></sub>. These similarities include the Erdős–Kac theorem on the distribution of the number of prime factors of a random integer, and Billingsley’s theorem on the largest prime factors of a random integer. In this paper we extend this analogy to non-uniform distributions.</p><p>Given a multiplicative function <i>α</i>: ℕ → ℝ<sub>≥0</sub>, one may associate with it a measure on the integers in [1, <i>x</i>], where <i>n</i> is sampled with probability proportional to the value <i>α</i>(<i>n</i>). Analogously, given a sequence {<i>θ</i><sub><i>i</i></sub>}<sub><i>i</i>≥1</sub> of non-negative reals, one may associate with it a measure on <i>S</i><sub><i>n</i></sub> that assigns to a permutation a probability proportional to a product of weights over the cycles of the permutation. This measure is known as the generalized Ewens measure.</p><p>We study the case where the mean value of <i>α</i> over primes tends to some positive <i>θ</i>, as well as the weights <i>α</i>(<i>p</i>) ≈ (log <i>p</i>)<sup><i>γ</i></sup>. In both cases, we obtain results in the integer setting which are in agreement with those in the permutation setting.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2609-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2609-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

从 [1, x] 中均匀采样的随机整数与从 Sn 中均匀采样的随机排列有相似之处。这些相似之处包括关于随机整数质因数分布的厄尔多斯-卡克(Erdős-Kac)定理,以及关于随机整数最大质因数的比林斯利(Billingsley)定理。给定一个乘法函数 α:ℕ → ℝ≥0,我们可以将其与 [1, x] 中整数的度量联系起来,其中 n 的取样概率与值 α(n) 成比例。类似地,给定一个非负实数序列 {θi}i≥1,我们可以将它与 Sn 上的一个度量联系起来,这个度量赋予一个排列的概率与排列周期的权重乘积成正比。我们研究了素数上 α 的均值趋于某个正 θ 的情况,以及权重 α(p) ≈ (log p)γ 的情况。在这两种情况下,我们在整数环境中得到的结果与在置换环境中得到的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative arithmetic functions and the generalized Ewens measure

Random integers, sampled uniformly from [1, x], share similarities with random permutations, sampled uniformly from Sn. These similarities include the Erdős–Kac theorem on the distribution of the number of prime factors of a random integer, and Billingsley’s theorem on the largest prime factors of a random integer. In this paper we extend this analogy to non-uniform distributions.

Given a multiplicative function α: ℕ → ℝ≥0, one may associate with it a measure on the integers in [1, x], where n is sampled with probability proportional to the value α(n). Analogously, given a sequence {θi}i≥1 of non-negative reals, one may associate with it a measure on Sn that assigns to a permutation a probability proportional to a product of weights over the cycles of the permutation. This measure is known as the generalized Ewens measure.

We study the case where the mean value of α over primes tends to some positive θ, as well as the weights α(p) ≈ (log p)γ. In both cases, we obtain results in the integer setting which are in agreement with those in the permutation setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信