Cayley-Hamilton 代数的广义化及其几何简介

IF 0.8 2区 数学 Q2 MATHEMATICS
Charles Almeida, Claudemir Fidelis, José Lucas Galdino
{"title":"Cayley-Hamilton 代数的广义化及其几何简介","authors":"Charles Almeida, Claudemir Fidelis, José Lucas Galdino","doi":"10.1007/s11856-024-2614-0","DOIUrl":null,"url":null,"abstract":"<p>Let <i>A</i> and <i>B</i> be graded algebras in the same variety of trace algebras, such that <i>A</i> is a finite-dimensional, central simple power associative algebra (in the ordinary sense). Over a field <i>K</i> of characteristic zero, we study sufficient conditions that ensure <i>B</i> to be a graded subalgebra of <i>A</i>. More precisely, we prove, under additional hypotheses, that there is a graded and trace-preserving embedding from <i>B</i> to <i>A</i> over some associative and commutative <i>K</i>-algebra <i>C</i> if and only if <i>B</i> satisfies all <i>G</i>-trace identities of <i>A</i> over <i>K.</i> As a consequence of these results, we give a geometric interpretation of our main theorem under the context of graded algebras, and we apply them beyond the Cayley–Hamilton algebras presented in [24, 29]. Such results open a wide range of opportunities to study geometry in Jordan and alternative algebras (with trivial grading).</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":"18 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of Cayley–Hamilton algebras and an introduction to their geometries\",\"authors\":\"Charles Almeida, Claudemir Fidelis, José Lucas Galdino\",\"doi\":\"10.1007/s11856-024-2614-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>A</i> and <i>B</i> be graded algebras in the same variety of trace algebras, such that <i>A</i> is a finite-dimensional, central simple power associative algebra (in the ordinary sense). Over a field <i>K</i> of characteristic zero, we study sufficient conditions that ensure <i>B</i> to be a graded subalgebra of <i>A</i>. More precisely, we prove, under additional hypotheses, that there is a graded and trace-preserving embedding from <i>B</i> to <i>A</i> over some associative and commutative <i>K</i>-algebra <i>C</i> if and only if <i>B</i> satisfies all <i>G</i>-trace identities of <i>A</i> over <i>K.</i> As a consequence of these results, we give a geometric interpretation of our main theorem under the context of graded algebras, and we apply them beyond the Cayley–Hamilton algebras presented in [24, 29]. Such results open a wide range of opportunities to study geometry in Jordan and alternative algebras (with trivial grading).</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2614-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2614-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 A 和 B 是同一痕量代数中的分级代数,且 A 是有限维、中心简单幂关联代数(普通意义上)。在特征为零的域 K 上,我们研究了确保 B 是 A 的分级子代数的充分条件。更确切地说,我们在附加假设下证明,当且仅当 B 满足 A 在 K 上的所有 G 迹同定时,在某个关联和交换 K 代数 C 上存在从 B 到 A 的分级和保迹嵌入。作为这些结果的结果,我们给出了我们的主定理在分级代数背景下的几何解释,并将它们应用到[24, 29]中提出的 Cayley-Hamilton 代数之外。这些结果为研究乔丹几何和替代代数(具有微分等级)开辟了广阔的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of Cayley–Hamilton algebras and an introduction to their geometries

Let A and B be graded algebras in the same variety of trace algebras, such that A is a finite-dimensional, central simple power associative algebra (in the ordinary sense). Over a field K of characteristic zero, we study sufficient conditions that ensure B to be a graded subalgebra of A. More precisely, we prove, under additional hypotheses, that there is a graded and trace-preserving embedding from B to A over some associative and commutative K-algebra C if and only if B satisfies all G-trace identities of A over K. As a consequence of these results, we give a geometric interpretation of our main theorem under the context of graded algebras, and we apply them beyond the Cayley–Hamilton algebras presented in [24, 29]. Such results open a wide range of opportunities to study geometry in Jordan and alternative algebras (with trivial grading).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信