传输噪音对界面配方的影响

IF 1.1 3区 数学 Q1 MATHEMATICS
Franco Flandoli, Satoshi Yokoyama
{"title":"传输噪音对界面配方的影响","authors":"Franco Flandoli, Satoshi Yokoyama","doi":"10.1007/s00025-024-02172-w","DOIUrl":null,"url":null,"abstract":"<p>The paper discusses a mass conserving Allen–Cahn equation with a small parameter <span>\\(\\epsilon &gt;0\\)</span> perturbed by transport type noise involving the smeared noise <span>\\({\\dot{w}}^\\epsilon _i\\)</span> (formally converging to white noise <span>\\({\\dot{w}}_i\\)</span>), and investigate its sharp interface limit as <span>\\(\\epsilon \\rightarrow 0\\)</span>. We restrict our discussion over the two-dimensional domain to construct the hypersurface driven by the stochastic term appearing due to the contribution from the transport term when <span>\\(\\epsilon \\rightarrow 0\\)</span>. We make use of asymptotic expansion method to discuss the sharp interface limit.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"103 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Transport Noise on Interface Formulation\",\"authors\":\"Franco Flandoli, Satoshi Yokoyama\",\"doi\":\"10.1007/s00025-024-02172-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper discusses a mass conserving Allen–Cahn equation with a small parameter <span>\\\\(\\\\epsilon &gt;0\\\\)</span> perturbed by transport type noise involving the smeared noise <span>\\\\({\\\\dot{w}}^\\\\epsilon _i\\\\)</span> (formally converging to white noise <span>\\\\({\\\\dot{w}}_i\\\\)</span>), and investigate its sharp interface limit as <span>\\\\(\\\\epsilon \\\\rightarrow 0\\\\)</span>. We restrict our discussion over the two-dimensional domain to construct the hypersurface driven by the stochastic term appearing due to the contribution from the transport term when <span>\\\\(\\\\epsilon \\\\rightarrow 0\\\\)</span>. We make use of asymptotic expansion method to discuss the sharp interface limit.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02172-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02172-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一个质量守恒的Allen-Cahn方程,该方程具有一个小参数\(\epsilon >0\),并受到涉及熏染噪声\({\dot{w}}^\epsilon _i\)(形式上收敛于白噪声\({\dot{w}}_i\))的输运型噪声的扰动,并研究了其\(\epsilon \rightarrow 0\)时的尖锐界面极限。我们将讨论限制在二维域上,以构建当 \(\epsilon \rightarrow 0\) 时由于传输项的贡献而出现的随机项驱动的超曲面。我们利用渐近展开法讨论尖锐界面极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Transport Noise on Interface Formulation

The paper discusses a mass conserving Allen–Cahn equation with a small parameter \(\epsilon >0\) perturbed by transport type noise involving the smeared noise \({\dot{w}}^\epsilon _i\) (formally converging to white noise \({\dot{w}}_i\)), and investigate its sharp interface limit as \(\epsilon \rightarrow 0\). We restrict our discussion over the two-dimensional domain to construct the hypersurface driven by the stochastic term appearing due to the contribution from the transport term when \(\epsilon \rightarrow 0\). We make use of asymptotic expansion method to discuss the sharp interface limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信