{"title":"利用虚拟显像重合法测量折射率","authors":"Rawand H Abdullah","doi":"10.1088/1361-6552/ad3ed7","DOIUrl":null,"url":null,"abstract":"In this study, we explore novel approaches to determining the index of refraction for various mediums by leveraging virtual images. We introduce a simplified yet effective method that utilizes apparent object positions resulting from light bending in a medium. Our focus lies in measuring the refractive index of liquids without the need for a microscope, emphasizing the measurement of real and apparent depths through the coincidence of virtual and apparent images. Comparative analysis with established techniques reveals the precision of our results, with accurate determinations of object and image positions. Through the collection and graphing of paired data, we calculate the refractive indices of water, vegetable oil, and ethanol. Our findings underscore the significance of this scientific methodology, offering time-efficient, implementable, and easily comprehensible procedures. We posit that this study holds promise for educational applications at various levels. Moreover, we propose extending our methodology to transparent solid materials, thereby broadening its potential applications.","PeriodicalId":39773,"journal":{"name":"Physics Education","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refractive index measurement using virtual—apparent image coincidence approach\",\"authors\":\"Rawand H Abdullah\",\"doi\":\"10.1088/1361-6552/ad3ed7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we explore novel approaches to determining the index of refraction for various mediums by leveraging virtual images. We introduce a simplified yet effective method that utilizes apparent object positions resulting from light bending in a medium. Our focus lies in measuring the refractive index of liquids without the need for a microscope, emphasizing the measurement of real and apparent depths through the coincidence of virtual and apparent images. Comparative analysis with established techniques reveals the precision of our results, with accurate determinations of object and image positions. Through the collection and graphing of paired data, we calculate the refractive indices of water, vegetable oil, and ethanol. Our findings underscore the significance of this scientific methodology, offering time-efficient, implementable, and easily comprehensible procedures. We posit that this study holds promise for educational applications at various levels. Moreover, we propose extending our methodology to transparent solid materials, thereby broadening its potential applications.\",\"PeriodicalId\":39773,\"journal\":{\"name\":\"Physics Education\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6552/ad3ed7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6552/ad3ed7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
Refractive index measurement using virtual—apparent image coincidence approach
In this study, we explore novel approaches to determining the index of refraction for various mediums by leveraging virtual images. We introduce a simplified yet effective method that utilizes apparent object positions resulting from light bending in a medium. Our focus lies in measuring the refractive index of liquids without the need for a microscope, emphasizing the measurement of real and apparent depths through the coincidence of virtual and apparent images. Comparative analysis with established techniques reveals the precision of our results, with accurate determinations of object and image positions. Through the collection and graphing of paired data, we calculate the refractive indices of water, vegetable oil, and ethanol. Our findings underscore the significance of this scientific methodology, offering time-efficient, implementable, and easily comprehensible procedures. We posit that this study holds promise for educational applications at various levels. Moreover, we propose extending our methodology to transparent solid materials, thereby broadening its potential applications.
期刊介绍:
Physics Education seeks to serve the physics teaching community and we welcome contributions from teachers. We seek to support the teaching of physics to students aged 11 up to introductory undergraduate level. We aim to provide professional development and support for teachers of physics around the world by providing: a forum for practising teachers to make an active contribution to the physics teaching community; knowledge updates in physics, educational research and relevant wider curriculum developments; and strategies for teaching and classroom management that will engage and motivate students.