{"title":"颗粒材料的随机第二梯度连续理论:第二部分","authors":"Gabriele La Valle, Christian Soize","doi":"10.1007/s00033-024-02232-9","DOIUrl":null,"url":null,"abstract":"<p>This article is the second part of a previous article devoted to the deterministic aspects. Here, we present a comprehensive study on the development and application of a novel stochastic second-gradient continuum model for particle-based materials. An application is presented concerning colloidal crystals. Since we are dealing with particle-based materials, factors such as the topology of contacts, particle sizes, shapes, and geometric structure are not considered. The mechanical properties of the introduced second-gradient continuum are modeled as random fields to account for uncertainties. The stochastic computational model is based on a mixed finite element (FE), and the Monte Carlo (MC) numerical simulation method is used as a stochastic solver. Finally, the resulting stochastic second-gradient model is applied to analyze colloidal crystals, which have wide-ranging applications. The simulations show the effects of second-order gradient on the mechanical response of a colloidal crystal under axial load, for which there could be significant fluctuations in the displacements.\n</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic second-gradient continuum theory for particle-based materials: part II\",\"authors\":\"Gabriele La Valle, Christian Soize\",\"doi\":\"10.1007/s00033-024-02232-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article is the second part of a previous article devoted to the deterministic aspects. Here, we present a comprehensive study on the development and application of a novel stochastic second-gradient continuum model for particle-based materials. An application is presented concerning colloidal crystals. Since we are dealing with particle-based materials, factors such as the topology of contacts, particle sizes, shapes, and geometric structure are not considered. The mechanical properties of the introduced second-gradient continuum are modeled as random fields to account for uncertainties. The stochastic computational model is based on a mixed finite element (FE), and the Monte Carlo (MC) numerical simulation method is used as a stochastic solver. Finally, the resulting stochastic second-gradient model is applied to analyze colloidal crystals, which have wide-ranging applications. The simulations show the effects of second-order gradient on the mechanical response of a colloidal crystal under axial load, for which there could be significant fluctuations in the displacements.\\n</p>\",\"PeriodicalId\":501481,\"journal\":{\"name\":\"Zeitschrift für angewandte Mathematik und Physik\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-024-02232-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02232-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic second-gradient continuum theory for particle-based materials: part II
This article is the second part of a previous article devoted to the deterministic aspects. Here, we present a comprehensive study on the development and application of a novel stochastic second-gradient continuum model for particle-based materials. An application is presented concerning colloidal crystals. Since we are dealing with particle-based materials, factors such as the topology of contacts, particle sizes, shapes, and geometric structure are not considered. The mechanical properties of the introduced second-gradient continuum are modeled as random fields to account for uncertainties. The stochastic computational model is based on a mixed finite element (FE), and the Monte Carlo (MC) numerical simulation method is used as a stochastic solver. Finally, the resulting stochastic second-gradient model is applied to analyze colloidal crystals, which have wide-ranging applications. The simulations show the effects of second-order gradient on the mechanical response of a colloidal crystal under axial load, for which there could be significant fluctuations in the displacements.