Noriaki Hamada, Satoshi Nakamura, Kenta Takahashi, Mario Okawa, Tomohiko Saitoh
{"title":"在 FLAPW 方法的基础上利用第一原理计算真实模拟价带光发射光谱","authors":"Noriaki Hamada, Satoshi Nakamura, Kenta Takahashi, Mario Okawa, Tomohiko Saitoh","doi":"10.7566/jpsj.93.054709","DOIUrl":null,"url":null,"abstract":"In order to reproduce experimental photoemission spectroscopy (PES) data by using band structure calculations with linearized augmented-plane-wave method, we developed a new method to calculate the atomic-subshell photoelectron differential cross section (PE-DCS) of the valence band. PE-DCS was calculated to be the sum of the products of the partial density of states (PDOS) and the photoionization differential cross section (PI-DCS) of each atomic subshell. To construct an appropriate PDOS beyond the conventional muffin-tin sphere (MTS) PDOS, we proposed a “nearly-neutral atomic sphere”, which can be defined as a natural extension of MTS. Although the calculational method for atomic-subshell PI-DCS was the standard Hartree–Fock–Slater method, we developed a new computer code in order to deal with the unoccupied electron shells in the ground state of isolated atoms up to ∼10 keV. Details of the PE-DCS calculations were examined by using two simple examples of Na metal and NaCl, and then, the method was applied to hard x-ray PES (HX-PES) data of CuAlO<sub>2</sub>. The experimental spectra were satisfactorily reproduced, demonstrating the potential applications of our method to HX-PES spectra of many compounds.","PeriodicalId":17304,"journal":{"name":"Journal of the Physical Society of Japan","volume":"83 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realistic Simulation of Valence-Band Photoemission Spectra by Using First-Principles Calculations on the Basis of FLAPW Method\",\"authors\":\"Noriaki Hamada, Satoshi Nakamura, Kenta Takahashi, Mario Okawa, Tomohiko Saitoh\",\"doi\":\"10.7566/jpsj.93.054709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reproduce experimental photoemission spectroscopy (PES) data by using band structure calculations with linearized augmented-plane-wave method, we developed a new method to calculate the atomic-subshell photoelectron differential cross section (PE-DCS) of the valence band. PE-DCS was calculated to be the sum of the products of the partial density of states (PDOS) and the photoionization differential cross section (PI-DCS) of each atomic subshell. To construct an appropriate PDOS beyond the conventional muffin-tin sphere (MTS) PDOS, we proposed a “nearly-neutral atomic sphere”, which can be defined as a natural extension of MTS. Although the calculational method for atomic-subshell PI-DCS was the standard Hartree–Fock–Slater method, we developed a new computer code in order to deal with the unoccupied electron shells in the ground state of isolated atoms up to ∼10 keV. Details of the PE-DCS calculations were examined by using two simple examples of Na metal and NaCl, and then, the method was applied to hard x-ray PES (HX-PES) data of CuAlO<sub>2</sub>. The experimental spectra were satisfactorily reproduced, demonstrating the potential applications of our method to HX-PES spectra of many compounds.\",\"PeriodicalId\":17304,\"journal\":{\"name\":\"Journal of the Physical Society of Japan\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Physical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7566/jpsj.93.054709\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Physical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7566/jpsj.93.054709","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了通过线性化增强平面波方法的能带结构计算来重现实验光发射光谱(PES)数据,我们开发了一种新方法来计算价带的原子子壳光电子微分截面(PE-DCS)。计算得出的 PE-DCS 是每个原子子壳的部分态密度(PDOS)和光离子化微分截面(PI-DCS)的乘积之和。为了在传统的松饼锡球(MTS)部分态密度之外构建合适的部分态密度,我们提出了 "近中性原子球",它可以被定义为 MTS 的自然扩展。虽然原子子壳 PI-DCS 的计算方法是标准的哈特里-福克-斯莱特方法,但我们开发了一种新的计算机代码,以处理孤立原子基态中高达 ∼10 keV 的未占电子壳。我们以 Na metal 和 NaCl 两个简单的例子考察了 PE-DCS 计算的细节,然后将该方法应用于 CuAlO2 的硬 X 射线 PES(HX-PES)数据。实验光谱得到了令人满意的再现,这表明我们的方法有可能应用于许多化合物的 HX-PES 光谱。
Realistic Simulation of Valence-Band Photoemission Spectra by Using First-Principles Calculations on the Basis of FLAPW Method
In order to reproduce experimental photoemission spectroscopy (PES) data by using band structure calculations with linearized augmented-plane-wave method, we developed a new method to calculate the atomic-subshell photoelectron differential cross section (PE-DCS) of the valence band. PE-DCS was calculated to be the sum of the products of the partial density of states (PDOS) and the photoionization differential cross section (PI-DCS) of each atomic subshell. To construct an appropriate PDOS beyond the conventional muffin-tin sphere (MTS) PDOS, we proposed a “nearly-neutral atomic sphere”, which can be defined as a natural extension of MTS. Although the calculational method for atomic-subshell PI-DCS was the standard Hartree–Fock–Slater method, we developed a new computer code in order to deal with the unoccupied electron shells in the ground state of isolated atoms up to ∼10 keV. Details of the PE-DCS calculations were examined by using two simple examples of Na metal and NaCl, and then, the method was applied to hard x-ray PES (HX-PES) data of CuAlO2. The experimental spectra were satisfactorily reproduced, demonstrating the potential applications of our method to HX-PES spectra of many compounds.
期刊介绍:
The papers published in JPSJ should treat fundamental and novel problems of physics scientifically and logically, and contribute to the development in the understanding of physics. The concrete objects are listed below.
Subjects Covered
JPSJ covers all the fields of physics including (but not restricted to)
Elementary particles and fields
Nuclear physics
Atomic and Molecular Physics
Fluid Dynamics
Plasma physics
Physics of Condensed Matter
Metal, Superconductor, Semiconductor, Magnetic Materials, Dielectric Materials
Physics of Nanoscale Materials
Optics and Quantum Electronics
Physics of Complex Systems
Mathematical Physics
Chemical physics
Biophysics
Geophysics
Astrophysics.