使用变分自动编码器进行 3D-Var 数据同化

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Boštjan Melinc, Žiga Zaplotnik
{"title":"使用变分自动编码器进行 3D-Var 数据同化","authors":"Boštjan Melinc, Žiga Zaplotnik","doi":"10.1002/qj.4708","DOIUrl":null,"url":null,"abstract":"Data assimilation of atmospheric observations traditionally relies on variational and Kalman filter methods. Here, an alternative neural network data assimilation (NNDA) with variational autoencoder (VAE) is proposed. The three‐dimensional variational (3D‐Var) data assimilation cost function is utilised to determine the analysis that optimally fuses simulated observations and the encoded short‐range persistence forecast (background), accounting for their errors. The minimisation is performed in the reduced‐order latent space discovered by the VAE. The variational problem is autodifferentiable, simplifying the computation of the cost‐function gradient necessary for efficient minimisation. We demonstrate that the background‐error covariance (B) matrix measured and represented in the latent space is quasidiagonal. The background‐error covariances in the grid‐point space are flow‐dependent, evolving seasonally and depending on the current state of the atmosphere. Data assimilation experiments with a single temperature observation in the lower troposphere indicate that the B matrix describes both tropical and extratropical background‐error covariances simultaneously.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"89 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D‐Var data assimilation using a variational autoencoder\",\"authors\":\"Boštjan Melinc, Žiga Zaplotnik\",\"doi\":\"10.1002/qj.4708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data assimilation of atmospheric observations traditionally relies on variational and Kalman filter methods. Here, an alternative neural network data assimilation (NNDA) with variational autoencoder (VAE) is proposed. The three‐dimensional variational (3D‐Var) data assimilation cost function is utilised to determine the analysis that optimally fuses simulated observations and the encoded short‐range persistence forecast (background), accounting for their errors. The minimisation is performed in the reduced‐order latent space discovered by the VAE. The variational problem is autodifferentiable, simplifying the computation of the cost‐function gradient necessary for efficient minimisation. We demonstrate that the background‐error covariance (B) matrix measured and represented in the latent space is quasidiagonal. The background‐error covariances in the grid‐point space are flow‐dependent, evolving seasonally and depending on the current state of the atmosphere. Data assimilation experiments with a single temperature observation in the lower troposphere indicate that the B matrix describes both tropical and extratropical background‐error covariances simultaneously.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4708\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4708","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大气观测数据同化传统上依赖于变异和卡尔曼滤波方法。这里提出了一种采用变异自动编码器(VAE)的神经网络数据同化(NNDA)替代方法。利用三维变分(3D-Var)数据同化成本函数来确定分析方法,从而最佳地融合模拟观测数据和编码的短程持久性预报(背景),并考虑它们之间的误差。在 VAE 发现的缩小阶潜在空间中进行最小化。变分问题是自可变的,简化了高效最小化所需的成本函数梯度计算。我们证明,在潜空间中测量和表示的背景-误差协方差(B)矩阵是四对角的。网格点空间中的背景误差协方差与流量有关,随季节变化,并取决于大气的当前状态。对流层下部单一温度观测数据同化实验表明,B 矩阵可同时描述热带和外热带背景误差协方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D‐Var data assimilation using a variational autoencoder
Data assimilation of atmospheric observations traditionally relies on variational and Kalman filter methods. Here, an alternative neural network data assimilation (NNDA) with variational autoencoder (VAE) is proposed. The three‐dimensional variational (3D‐Var) data assimilation cost function is utilised to determine the analysis that optimally fuses simulated observations and the encoded short‐range persistence forecast (background), accounting for their errors. The minimisation is performed in the reduced‐order latent space discovered by the VAE. The variational problem is autodifferentiable, simplifying the computation of the cost‐function gradient necessary for efficient minimisation. We demonstrate that the background‐error covariance (B) matrix measured and represented in the latent space is quasidiagonal. The background‐error covariances in the grid‐point space are flow‐dependent, evolving seasonally and depending on the current state of the atmosphere. Data assimilation experiments with a single temperature observation in the lower troposphere indicate that the B matrix describes both tropical and extratropical background‐error covariances simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信