Stefan Karlsson, John Hughes, Robbert Jongeling, Adnan Čaušević, Daniel Sundmark
{"title":"通过生成的示例探索应用程序接口行为","authors":"Stefan Karlsson, John Hughes, Robbert Jongeling, Adnan Čaušević, Daniel Sundmark","doi":"10.1007/s11219-024-09668-2","DOIUrl":null,"url":null,"abstract":"<p>Understanding the behaviour of a system’s API can be hard. Giving users access to <i>relevant</i> examples of how an API behaves has been shown to make this easier for them. In addition, such examples can be used to verify expected behaviour or identify unwanted behaviours. Methods for automatically generating examples have existed for a long time. However, state-of-the-art methods rely on either white-box information, such as source code, or on formal specifications of the system behaviour. But what if you do not have access to either? This may be the case, for example, when interacting with a third-party API. In this paper, we present an approach to automatically generate relevant examples of behaviours of an API, without requiring either source code or a formal specification of behaviour. Evaluation on an industry-grade REST API shows that our method can produce small and relevant examples that can help engineers to understand the system under exploration.</p>","PeriodicalId":21827,"journal":{"name":"Software Quality Journal","volume":"30 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring API behaviours through generated examples\",\"authors\":\"Stefan Karlsson, John Hughes, Robbert Jongeling, Adnan Čaušević, Daniel Sundmark\",\"doi\":\"10.1007/s11219-024-09668-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the behaviour of a system’s API can be hard. Giving users access to <i>relevant</i> examples of how an API behaves has been shown to make this easier for them. In addition, such examples can be used to verify expected behaviour or identify unwanted behaviours. Methods for automatically generating examples have existed for a long time. However, state-of-the-art methods rely on either white-box information, such as source code, or on formal specifications of the system behaviour. But what if you do not have access to either? This may be the case, for example, when interacting with a third-party API. In this paper, we present an approach to automatically generate relevant examples of behaviours of an API, without requiring either source code or a formal specification of behaviour. Evaluation on an industry-grade REST API shows that our method can produce small and relevant examples that can help engineers to understand the system under exploration.</p>\",\"PeriodicalId\":21827,\"journal\":{\"name\":\"Software Quality Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Quality Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11219-024-09668-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Quality Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11219-024-09668-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Exploring API behaviours through generated examples
Understanding the behaviour of a system’s API can be hard. Giving users access to relevant examples of how an API behaves has been shown to make this easier for them. In addition, such examples can be used to verify expected behaviour or identify unwanted behaviours. Methods for automatically generating examples have existed for a long time. However, state-of-the-art methods rely on either white-box information, such as source code, or on formal specifications of the system behaviour. But what if you do not have access to either? This may be the case, for example, when interacting with a third-party API. In this paper, we present an approach to automatically generate relevant examples of behaviours of an API, without requiring either source code or a formal specification of behaviour. Evaluation on an industry-grade REST API shows that our method can produce small and relevant examples that can help engineers to understand the system under exploration.
期刊介绍:
The aims of the Software Quality Journal are:
(1) To promote awareness of the crucial role of quality management in the effective construction of the software systems developed, used, and/or maintained by organizations in pursuit of their business objectives.
(2) To provide a forum of the exchange of experiences and information on software quality management and the methods, tools and products used to measure and achieve it.
(3) To provide a vehicle for the publication of academic papers related to all aspects of software quality.
The Journal addresses all aspects of software quality from both a practical and an academic viewpoint. It invites contributions from practitioners and academics, as well as national and international policy and standard making bodies, and sets out to be the definitive international reference source for such information.
The Journal will accept research, technique, case study, survey and tutorial submissions that address quality-related issues including, but not limited to: internal and external quality standards, management of quality within organizations, technical aspects of quality, quality aspects for product vendors, software measurement and metrics, software testing and other quality assurance techniques, total quality management and cultural aspects. Other technical issues with regard to software quality, including: data management, formal methods, safety critical applications, and CASE.