用射线法分析迁移速度 双平方根方程的渐近性

IF 0.58 Q3 Engineering
N. N. Shilov, A. A. Duchkov
{"title":"用射线法分析迁移速度 双平方根方程的渐近性","authors":"N. N. Shilov,&nbsp;A. A. Duchkov","doi":"10.1134/S1990478924010137","DOIUrl":null,"url":null,"abstract":"<p> Seismic images of subsurface structures are the most valuable outcome of seismic data\nprocessing. The image quality is strongly affected by the accuracy of background velocity model.\nIn this paper, we develop a gradient-descent velocity update algorithm based on our original\nhigh-frequency asymptotics of the Double Square Root equation, i.e., a special one-way\napproximation of the wave equation describing single-scattered wave field only. We propose a loss\nfunction consistent with widely adopted imaging condition and derive equations for its gradient\ncomputation. We test our method on noise-free synthetic datasets in 2D settings.\n</p>","PeriodicalId":607,"journal":{"name":"Journal of Applied and Industrial Mathematics","volume":"18 1","pages":"150 - 166"},"PeriodicalIF":0.5800,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Migration Velocity Analysis Using a Ray Method Asymptotics of\\nthe Double Square Root Equation\",\"authors\":\"N. N. Shilov,&nbsp;A. A. Duchkov\",\"doi\":\"10.1134/S1990478924010137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Seismic images of subsurface structures are the most valuable outcome of seismic data\\nprocessing. The image quality is strongly affected by the accuracy of background velocity model.\\nIn this paper, we develop a gradient-descent velocity update algorithm based on our original\\nhigh-frequency asymptotics of the Double Square Root equation, i.e., a special one-way\\napproximation of the wave equation describing single-scattered wave field only. We propose a loss\\nfunction consistent with widely adopted imaging condition and derive equations for its gradient\\ncomputation. We test our method on noise-free synthetic datasets in 2D settings.\\n</p>\",\"PeriodicalId\":607,\"journal\":{\"name\":\"Journal of Applied and Industrial Mathematics\",\"volume\":\"18 1\",\"pages\":\"150 - 166\"},\"PeriodicalIF\":0.5800,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1990478924010137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1990478924010137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 地下结构的地震图像是地震数据处理中最有价值的成果。本文基于我们独创的双平方根方程的高频渐近线,即一种仅描述单散射波场的特殊单向近似波方程,开发了一种梯度-后退速度更新算法。我们提出了与广泛采用的成像条件相一致的损耗函数,并推导出梯度计算公式。我们在二维环境下的无噪声合成数据集上测试了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Migration Velocity Analysis Using a Ray Method Asymptotics of
the Double Square Root Equation

Migration Velocity Analysis Using a Ray Method Asymptotics of the Double Square Root Equation

Seismic images of subsurface structures are the most valuable outcome of seismic data processing. The image quality is strongly affected by the accuracy of background velocity model. In this paper, we develop a gradient-descent velocity update algorithm based on our original high-frequency asymptotics of the Double Square Root equation, i.e., a special one-way approximation of the wave equation describing single-scattered wave field only. We propose a loss function consistent with widely adopted imaging condition and derive equations for its gradient computation. We test our method on noise-free synthetic datasets in 2D settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied and Industrial Mathematics
Journal of Applied and Industrial Mathematics Engineering-Industrial and Manufacturing Engineering
CiteScore
1.00
自引率
0.00%
发文量
16
期刊介绍: Journal of Applied and Industrial Mathematics  is a journal that publishes original and review articles containing theoretical results and those of interest for applications in various branches of industry. The journal topics include the qualitative theory of differential equations in application to mechanics, physics, chemistry, biology, technical and natural processes; mathematical modeling in mechanics, physics, engineering, chemistry, biology, ecology, medicine, etc.; control theory; discrete optimization; discrete structures and extremum problems; combinatorics; control and reliability of discrete circuits; mathematical programming; mathematical models and methods for making optimal decisions; models of theory of scheduling, location and replacement of equipment; modeling the control processes; development and analysis of algorithms; synthesis and complexity of control systems; automata theory; graph theory; game theory and its applications; coding theory; scheduling theory; and theory of circuits.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信