{"title":"论纤维的布劳尔群","authors":"Yanshuai Qin","doi":"10.1007/s00209-024-03487-8","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathcal {X}}\\rightarrow C\\)</span> be a flat <i>k</i>-morphism between smooth integral varieties over a finitely generated field <i>k</i> such that the generic fiber <i>X</i> is smooth, projective and geometrically connected. Assuming that <i>C</i> is a curve with function field <i>K</i>, we build a relation between the Tate-Shafarevich group of <span>\\(\\textrm{Pic}^0_{X/K}\\)</span> and the geometric Brauer groups of <span>\\({\\mathcal {X}}\\)</span> and <i>X</i>, generalizing a theorem of Artin and Grothendieck for fibered surfaces to higher relative dimensions.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Brauer groups of fibrations\",\"authors\":\"Yanshuai Qin\",\"doi\":\"10.1007/s00209-024-03487-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({\\\\mathcal {X}}\\\\rightarrow C\\\\)</span> be a flat <i>k</i>-morphism between smooth integral varieties over a finitely generated field <i>k</i> such that the generic fiber <i>X</i> is smooth, projective and geometrically connected. Assuming that <i>C</i> is a curve with function field <i>K</i>, we build a relation between the Tate-Shafarevich group of <span>\\\\(\\\\textrm{Pic}^0_{X/K}\\\\)</span> and the geometric Brauer groups of <span>\\\\({\\\\mathcal {X}}\\\\)</span> and <i>X</i>, generalizing a theorem of Artin and Grothendieck for fibered surfaces to higher relative dimensions.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03487-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03487-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 \({\mathcal {X}}\rightarrow C\) 是有限生成域 k 上光滑积分 varieties 之间的平 k 形,使得泛函纤维 X 是光滑的、投影的和几何连接的。假设 C 是有函数域 K 的曲线,我们在 \(\textrm{Pic}^0_{X/K}\) 的 Tate-Shafarevich 群和\({mathcal {X}}\) 与 X 的几何布劳尔群之间建立了一种关系,将阿尔廷和格罗登第克关于纤维曲面的定理推广到了更高的相对维度。
Let \({\mathcal {X}}\rightarrow C\) be a flat k-morphism between smooth integral varieties over a finitely generated field k such that the generic fiber X is smooth, projective and geometrically connected. Assuming that C is a curve with function field K, we build a relation between the Tate-Shafarevich group of \(\textrm{Pic}^0_{X/K}\) and the geometric Brauer groups of \({\mathcal {X}}\) and X, generalizing a theorem of Artin and Grothendieck for fibered surfaces to higher relative dimensions.