论纤维的布劳尔群

IF 1 3区 数学 Q1 MATHEMATICS
Yanshuai Qin
{"title":"论纤维的布劳尔群","authors":"Yanshuai Qin","doi":"10.1007/s00209-024-03487-8","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathcal {X}}\\rightarrow C\\)</span> be a flat <i>k</i>-morphism between smooth integral varieties over a finitely generated field <i>k</i> such that the generic fiber <i>X</i> is smooth, projective and geometrically connected. Assuming that <i>C</i> is a curve with function field <i>K</i>, we build a relation between the Tate-Shafarevich group of <span>\\(\\textrm{Pic}^0_{X/K}\\)</span> and the geometric Brauer groups of <span>\\({\\mathcal {X}}\\)</span> and <i>X</i>, generalizing a theorem of Artin and Grothendieck for fibered surfaces to higher relative dimensions.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Brauer groups of fibrations\",\"authors\":\"Yanshuai Qin\",\"doi\":\"10.1007/s00209-024-03487-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({\\\\mathcal {X}}\\\\rightarrow C\\\\)</span> be a flat <i>k</i>-morphism between smooth integral varieties over a finitely generated field <i>k</i> such that the generic fiber <i>X</i> is smooth, projective and geometrically connected. Assuming that <i>C</i> is a curve with function field <i>K</i>, we build a relation between the Tate-Shafarevich group of <span>\\\\(\\\\textrm{Pic}^0_{X/K}\\\\)</span> and the geometric Brauer groups of <span>\\\\({\\\\mathcal {X}}\\\\)</span> and <i>X</i>, generalizing a theorem of Artin and Grothendieck for fibered surfaces to higher relative dimensions.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03487-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03487-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \({\mathcal {X}}\rightarrow C\) 是有限生成域 k 上光滑积分 varieties 之间的平 k 形,使得泛函纤维 X 是光滑的、投影的和几何连接的。假设 C 是有函数域 K 的曲线,我们在 \(\textrm{Pic}^0_{X/K}\) 的 Tate-Shafarevich 群和\({mathcal {X}}\) 与 X 的几何布劳尔群之间建立了一种关系,将阿尔廷和格罗登第克关于纤维曲面的定理推广到了更高的相对维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Brauer groups of fibrations

Let \({\mathcal {X}}\rightarrow C\) be a flat k-morphism between smooth integral varieties over a finitely generated field k such that the generic fiber X is smooth, projective and geometrically connected. Assuming that C is a curve with function field K, we build a relation between the Tate-Shafarevich group of \(\textrm{Pic}^0_{X/K}\) and the geometric Brauer groups of \({\mathcal {X}}\) and X, generalizing a theorem of Artin and Grothendieck for fibered surfaces to higher relative dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信