托勒密变体的扭曲一环不变量和雅各布数

IF 1 3区 数学 Q1 MATHEMATICS
Seokbeom Yoon
{"title":"托勒密变体的扭曲一环不变量和雅各布数","authors":"Seokbeom Yoon","doi":"10.1007/s00209-024-03491-y","DOIUrl":null,"url":null,"abstract":"<p>We reformulate the twisted 1-loop invariant in terms of Ptolemy coordinates. In addition, we prove that the twisted 1-loop invariant is equal to the adjoint twisted Alexander polynomial for all hyperbolic once-punctured torus bundles. This shows that the 1-loop conjecture proposed by Dimofte and Garoufalidis holds for all hyperbolic once-punctured torus bundles.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The twisted 1-loop invariant and the Jacobian of Ptolemy varieties\",\"authors\":\"Seokbeom Yoon\",\"doi\":\"10.1007/s00209-024-03491-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We reformulate the twisted 1-loop invariant in terms of Ptolemy coordinates. In addition, we prove that the twisted 1-loop invariant is equal to the adjoint twisted Alexander polynomial for all hyperbolic once-punctured torus bundles. This shows that the 1-loop conjecture proposed by Dimofte and Garoufalidis holds for all hyperbolic once-punctured torus bundles.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03491-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03491-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们用托勒密坐标重新表述了扭曲一环不变量。此外,我们还证明了对于所有双曲一次穿孔环束,扭曲一环不变量等于邻接的扭曲亚历山大多项式。这表明迪莫夫特和加鲁法利迪斯提出的单环猜想对所有双曲一次穿孔环束都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The twisted 1-loop invariant and the Jacobian of Ptolemy varieties

The twisted 1-loop invariant and the Jacobian of Ptolemy varieties

We reformulate the twisted 1-loop invariant in terms of Ptolemy coordinates. In addition, we prove that the twisted 1-loop invariant is equal to the adjoint twisted Alexander polynomial for all hyperbolic once-punctured torus bundles. This shows that the 1-loop conjecture proposed by Dimofte and Garoufalidis holds for all hyperbolic once-punctured torus bundles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信