R Mezencev, M Feshuk, L Kolaczkowski, G C Peterson, Q J Zhao, S Watford, J A Weaver
{"title":"化学品暴露对小鼠和大鼠造成的组织病理学影响与肝脏重量变化之间的关联:毒性参考数据库(ToxRefDB)数据分析","authors":"R Mezencev, M Feshuk, L Kolaczkowski, G C Peterson, Q J Zhao, S Watford, J A Weaver","doi":"10.1093/toxsci/kfae056","DOIUrl":null,"url":null,"abstract":"Absolute (ALW) and relative (RLW) liver weight changes are sensitive endpoints in repeat-dose rodent toxicity studies, and their changes are often used for quantitative assessment of health effects induced by hepatotoxic chemicals using the benchmark dose-response modeling (BMD) approach. To find biologically relevant liver weight changes to chemical exposures, we evaluated all data available for liver weight changes and associated liver histopathologic findings from the Toxicity Reference Database (ToxRefDB). Our analysis of 389 subchronic mouse and rat studies for 273 chemicals found significant differences in treatment-related ALW and RLW changes between dose groups with and without liver histopathologic changes. In addition, we demonstrate that chemical treatment-induced ALW and RLW changes can predict the presence of histopathologic findings and inform the selection of biologically relevant liver weight changes for BMD modeling and derivation of toxicity values.","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The association between histopathologic effects and liver weight changes induced in mice and rats by chemical exposures: An analysis of the data from Toxicity Reference Database (ToxRefDB)\",\"authors\":\"R Mezencev, M Feshuk, L Kolaczkowski, G C Peterson, Q J Zhao, S Watford, J A Weaver\",\"doi\":\"10.1093/toxsci/kfae056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Absolute (ALW) and relative (RLW) liver weight changes are sensitive endpoints in repeat-dose rodent toxicity studies, and their changes are often used for quantitative assessment of health effects induced by hepatotoxic chemicals using the benchmark dose-response modeling (BMD) approach. To find biologically relevant liver weight changes to chemical exposures, we evaluated all data available for liver weight changes and associated liver histopathologic findings from the Toxicity Reference Database (ToxRefDB). Our analysis of 389 subchronic mouse and rat studies for 273 chemicals found significant differences in treatment-related ALW and RLW changes between dose groups with and without liver histopathologic changes. In addition, we demonstrate that chemical treatment-induced ALW and RLW changes can predict the presence of histopathologic findings and inform the selection of biologically relevant liver weight changes for BMD modeling and derivation of toxicity values.\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfae056\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The association between histopathologic effects and liver weight changes induced in mice and rats by chemical exposures: An analysis of the data from Toxicity Reference Database (ToxRefDB)
Absolute (ALW) and relative (RLW) liver weight changes are sensitive endpoints in repeat-dose rodent toxicity studies, and their changes are often used for quantitative assessment of health effects induced by hepatotoxic chemicals using the benchmark dose-response modeling (BMD) approach. To find biologically relevant liver weight changes to chemical exposures, we evaluated all data available for liver weight changes and associated liver histopathologic findings from the Toxicity Reference Database (ToxRefDB). Our analysis of 389 subchronic mouse and rat studies for 273 chemicals found significant differences in treatment-related ALW and RLW changes between dose groups with and without liver histopathologic changes. In addition, we demonstrate that chemical treatment-induced ALW and RLW changes can predict the presence of histopathologic findings and inform the selection of biologically relevant liver weight changes for BMD modeling and derivation of toxicity values.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.