翻转斯蒂费尔流形的复 K 环

Samik Basu, Shilpa Gondhali, Fathima Safikaa
{"title":"翻转斯蒂费尔流形的复 K 环","authors":"Samik Basu, Shilpa Gondhali, Fathima Safikaa","doi":"arxiv-2404.15803","DOIUrl":null,"url":null,"abstract":"The flip Stiefel manifolds (FV_{m,2s}) are defined as the quotient of the\nreal Stiefel manifolds (V_{m,2s}) induced by the simultaneous pairwise flipping\nof the co-ordinates by the cyclic group of order 2. We calculate the complex\n(K)-ring of the flip Stiefel manifolds, $K^\\ast(FV_{m,2s})$, for $s$ even.\nStandard techniques involve the representation theory of $Spin(m),$ and the\nHodgkin spectral sequence. However, the non-trivial element inducing the action\ndoesn't readily yield the desired homomorphisms. Hence, by performing\nadditional analysis, we settle the question for the case of (s \\equiv 0 \\pmod\n2.)","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complex K ring of the flip Stiefel manifolds\",\"authors\":\"Samik Basu, Shilpa Gondhali, Fathima Safikaa\",\"doi\":\"arxiv-2404.15803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flip Stiefel manifolds (FV_{m,2s}) are defined as the quotient of the\\nreal Stiefel manifolds (V_{m,2s}) induced by the simultaneous pairwise flipping\\nof the co-ordinates by the cyclic group of order 2. We calculate the complex\\n(K)-ring of the flip Stiefel manifolds, $K^\\\\ast(FV_{m,2s})$, for $s$ even.\\nStandard techniques involve the representation theory of $Spin(m),$ and the\\nHodgkin spectral sequence. However, the non-trivial element inducing the action\\ndoesn't readily yield the desired homomorphisms. Hence, by performing\\nadditional analysis, we settle the question for the case of (s \\\\equiv 0 \\\\pmod\\n2.)\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.15803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.15803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

翻转斯蒂费尔流形(FV_{m,2s})被定义为由2阶循环群同时成对翻转坐标所诱导的斯蒂费尔流形(V_{m,2s})的商。我们计算了翻转斯蒂费尔流形的复(K)环,即 $K^\ast(FV_{m,2s})$,对于 $s$ 偶数。标准技术涉及 $Spin(m)的表示理论,以及霍奇金谱序列。然而,诱导作用的非三维元素并不容易产生所需的同态。因此,通过附加分析,我们解决了(s \equiv 0 \pmod2.)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complex K ring of the flip Stiefel manifolds
The flip Stiefel manifolds (FV_{m,2s}) are defined as the quotient of the real Stiefel manifolds (V_{m,2s}) induced by the simultaneous pairwise flipping of the co-ordinates by the cyclic group of order 2. We calculate the complex (K)-ring of the flip Stiefel manifolds, $K^\ast(FV_{m,2s})$, for $s$ even. Standard techniques involve the representation theory of $Spin(m),$ and the Hodgkin spectral sequence. However, the non-trivial element inducing the action doesn't readily yield the desired homomorphisms. Hence, by performing additional analysis, we settle the question for the case of (s \equiv 0 \pmod 2.)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信