加强指数化的部门限制的 SSD 子集

Cristiano Arbex Valle, John E Beasley
{"title":"加强指数化的部门限制的 SSD 子集","authors":"Cristiano Arbex Valle, John E Beasley","doi":"arxiv-2404.16777","DOIUrl":null,"url":null,"abstract":"In this paper we apply second order stochastic dominance (SSD) to the problem\nof enhanced indexation with asset subset (sector) constraints. The problem we\nconsider is how to construct a portfolio that is designed to outperform a given\nmarket index whilst having regard to the proportion of the portfolio invested\nin distinct market sectors. In our approach, subset SSD, the portfolio\nassociated with each sector is treated in a SSD manner. In other words in\nsubset SSD we actively try to find sector portfolios that SSD dominate their\nrespective sector indices. However the proportion of the overall portfolio\ninvested in each sector is not pre-specified, rather it is decided via\noptimisation. Computational results are given for our approach as applied to\nthe S\\&P~500 over the period $29^{\\text{th}}$ August 2018 to $29^{\\text{th}}$\nDecember 2023. This period, over 5 years, includes the Covid pandemic, which\nhad a significant effect on stock prices. Our results indicate that the scaled\nversion of our subset SSD approach significantly outperforms the S\\&P~500 over\nthe period considered. Our approach also outperforms the standard SSD based\napproach to the problem.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subset SSD for enhanced indexation with sector constraints\",\"authors\":\"Cristiano Arbex Valle, John E Beasley\",\"doi\":\"arxiv-2404.16777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we apply second order stochastic dominance (SSD) to the problem\\nof enhanced indexation with asset subset (sector) constraints. The problem we\\nconsider is how to construct a portfolio that is designed to outperform a given\\nmarket index whilst having regard to the proportion of the portfolio invested\\nin distinct market sectors. In our approach, subset SSD, the portfolio\\nassociated with each sector is treated in a SSD manner. In other words in\\nsubset SSD we actively try to find sector portfolios that SSD dominate their\\nrespective sector indices. However the proportion of the overall portfolio\\ninvested in each sector is not pre-specified, rather it is decided via\\noptimisation. Computational results are given for our approach as applied to\\nthe S\\\\&P~500 over the period $29^{\\\\text{th}}$ August 2018 to $29^{\\\\text{th}}$\\nDecember 2023. This period, over 5 years, includes the Covid pandemic, which\\nhad a significant effect on stock prices. Our results indicate that the scaled\\nversion of our subset SSD approach significantly outperforms the S\\\\&P~500 over\\nthe period considered. Our approach also outperforms the standard SSD based\\napproach to the problem.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.16777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.16777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将二阶随机支配(SSD)应用于具有资产子集(行业)约束的增强指数化问题。我们所考虑的问题是,如何构建一个旨在跑赢给定市场指数的投资组合,同时考虑到投资组合中投资于不同市场部门的比例。在我们的子集 SSD 方法中,与每个行业相关的投资组合都是以 SSD 的方式处理的。换句话说,在 SSD 子集中,我们积极尝试寻找在 SSD 中主导其相应行业指数的行业投资组合。不过,投资于各行业的比例并不是预先设定的,而是通过优化决定的。本文给出了我们的方法在 2018 年 8 月 $29^{text{th}$ 至 2023 年 12 月 $29^{text{th}$ 期间应用于 S\&P~500 的计算结果。这5年多的时间里,包括了对股票价格有重大影响的Covid大流行。我们的结果表明,在所考虑的期间内,我们的子集 SSD 方法的缩放版本明显优于 S/&P~500。我们的方法也优于基于 SSD 的标准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subset SSD for enhanced indexation with sector constraints
In this paper we apply second order stochastic dominance (SSD) to the problem of enhanced indexation with asset subset (sector) constraints. The problem we consider is how to construct a portfolio that is designed to outperform a given market index whilst having regard to the proportion of the portfolio invested in distinct market sectors. In our approach, subset SSD, the portfolio associated with each sector is treated in a SSD manner. In other words in subset SSD we actively try to find sector portfolios that SSD dominate their respective sector indices. However the proportion of the overall portfolio invested in each sector is not pre-specified, rather it is decided via optimisation. Computational results are given for our approach as applied to the S\&P~500 over the period $29^{\text{th}}$ August 2018 to $29^{\text{th}}$ December 2023. This period, over 5 years, includes the Covid pandemic, which had a significant effect on stock prices. Our results indicate that the scaled version of our subset SSD approach significantly outperforms the S\&P~500 over the period considered. Our approach also outperforms the standard SSD based approach to the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信