{"title":"索波列夫入圆映射的严格 BV 松弛面积:高维度情况","authors":"Simone Carano, Domenico Mucci","doi":"10.1007/s00030-024-00941-8","DOIUrl":null,"url":null,"abstract":"<p>We deal with the relaxed area functional in the strict <i>BV</i>-convergence of non-smooth maps defined in domains of generic dimension and taking values into the unit circle. In case of Sobolev maps, a complete explicit formula is obtained. Our proof is based on tools from Geometric Measure Theory and Cartesian currents. We then discuss the possible extension to the wider class of maps with bounded variation. Finally, we show a counterexample to the locality property in case of both dimension and codimension larger than two.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strict BV relaxed area of Sobolev maps into the circle: the high dimension case\",\"authors\":\"Simone Carano, Domenico Mucci\",\"doi\":\"10.1007/s00030-024-00941-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We deal with the relaxed area functional in the strict <i>BV</i>-convergence of non-smooth maps defined in domains of generic dimension and taking values into the unit circle. In case of Sobolev maps, a complete explicit formula is obtained. Our proof is based on tools from Geometric Measure Theory and Cartesian currents. We then discuss the possible extension to the wider class of maps with bounded variation. Finally, we show a counterexample to the locality property in case of both dimension and codimension larger than two.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00941-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00941-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Strict BV relaxed area of Sobolev maps into the circle: the high dimension case
We deal with the relaxed area functional in the strict BV-convergence of non-smooth maps defined in domains of generic dimension and taking values into the unit circle. In case of Sobolev maps, a complete explicit formula is obtained. Our proof is based on tools from Geometric Measure Theory and Cartesian currents. We then discuss the possible extension to the wider class of maps with bounded variation. Finally, we show a counterexample to the locality property in case of both dimension and codimension larger than two.