索波列夫入圆映射的严格 BV 松弛面积:高维度情况

Simone Carano, Domenico Mucci
{"title":"索波列夫入圆映射的严格 BV 松弛面积:高维度情况","authors":"Simone Carano, Domenico Mucci","doi":"10.1007/s00030-024-00941-8","DOIUrl":null,"url":null,"abstract":"<p>We deal with the relaxed area functional in the strict <i>BV</i>-convergence of non-smooth maps defined in domains of generic dimension and taking values into the unit circle. In case of Sobolev maps, a complete explicit formula is obtained. Our proof is based on tools from Geometric Measure Theory and Cartesian currents. We then discuss the possible extension to the wider class of maps with bounded variation. Finally, we show a counterexample to the locality property in case of both dimension and codimension larger than two.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strict BV relaxed area of Sobolev maps into the circle: the high dimension case\",\"authors\":\"Simone Carano, Domenico Mucci\",\"doi\":\"10.1007/s00030-024-00941-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We deal with the relaxed area functional in the strict <i>BV</i>-convergence of non-smooth maps defined in domains of generic dimension and taking values into the unit circle. In case of Sobolev maps, a complete explicit formula is obtained. Our proof is based on tools from Geometric Measure Theory and Cartesian currents. We then discuss the possible extension to the wider class of maps with bounded variation. Finally, we show a counterexample to the locality property in case of both dimension and codimension larger than two.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00941-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00941-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了定义在一般维数域中并取值为单位圆的非光滑映射的严格 BV 收敛中的松弛面积函数。对于索波列夫映射,我们得到了一个完整的明确公式。我们的证明基于几何测度理论和笛卡尔电流的工具。然后,我们讨论了扩展到更广泛的有界变映射类别的可能性。最后,我们展示了一个反例,即在维数和编集数都大于 2 的情况下的局部性性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strict BV relaxed area of Sobolev maps into the circle: the high dimension case

Strict BV relaxed area of Sobolev maps into the circle: the high dimension case

We deal with the relaxed area functional in the strict BV-convergence of non-smooth maps defined in domains of generic dimension and taking values into the unit circle. In case of Sobolev maps, a complete explicit formula is obtained. Our proof is based on tools from Geometric Measure Theory and Cartesian currents. We then discuss the possible extension to the wider class of maps with bounded variation. Finally, we show a counterexample to the locality property in case of both dimension and codimension larger than two.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信