相对平方根势中 B 和 D 介子的基态光谱和衰变特性

IF 1.5 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
S. Behera, S. Panda
{"title":"相对平方根势中 B 和 D 介子的基态光谱和衰变特性","authors":"S. Behera, S. Panda","doi":"10.1142/s021773232450038x","DOIUrl":null,"url":null,"abstract":"<p>We look at the mass spectra of the <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>±</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>ρ</mi></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>π</mi></math></span><span></span>, and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>ω</mi></math></span><span></span> mesons using a relativistic square root potential. Before looking at the mass spectra, we have to figure out the model parameters, which are <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>U</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>1</mn><mn>1</mn><mn>5</mn></math></span><span></span><span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV and <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8</mn><mn>8</mn><mn>5</mn></math></span><span></span><span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV. The calculated result of <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo></mrow></msup><mo stretchy=\"false\">(</mo><mn>1</mn><mo>.</mo><mn>8</mn><mn>6</mn><mn>1</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup><mo stretchy=\"false\">(</mo><mn>2</mn><mo>.</mo><mn>0</mn><mn>1</mn><mn>0</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo stretchy=\"false\">(</mo><mn>1</mn><mo>.</mo><mn>9</mn><mn>0</mn><mn>3</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo><mo>±</mo></mrow></msubsup><mo stretchy=\"false\">(</mo><mn>2</mn><mo>.</mo><mn>1</mn><mn>1</mn><mn>2</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo></mrow></msup><mo stretchy=\"false\">(</mo><mn>5</mn><mo>.</mo><mn>2</mn><mn>6</mn><mn>4</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup><mo stretchy=\"false\">(</mo><mn>5</mn><mo>.</mo><mn>3</mn><mn>2</mn><mn>7</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mn>5</mn><mo>.</mo><mn>3</mn><mn>4</mn><mn>5</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn><mo>∗</mo></mrow></msubsup><mo stretchy=\"false\">(</mo><mn>5</mn><mo>.</mo><mn>4</mn><mn>2</mn><mn>3</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo stretchy=\"false\">(</mo><mn>5</mn><mo>.</mo><mn>9</mn><mn>5</mn><mn>6</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup><mo stretchy=\"false\">(</mo><mn>6</mn><mo>.</mo><mn>2</mn><mn>7</mn><mn>7</mn><mspace width=\".17em\"></mspace><mstyle><mtext mathvariant=\"normal\">GeV</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>, findings of this study exhibit a notable concurrence with the experimental observations and pertinent theoretical projections. We estimate the decay constant, leptonic decay width, semileptonic decay width, and branching fractions of pseudoscalar and vector mesons, specifically B and D mesons, while keeping the model parameters unchanged. The pseudoscalar decay constants and partial decay widths of “B and D-mesons” reasonably agree with the theoretical predictions, lattice quantum chromodynamics (LQCD) calculations, and experimental data. Moreover, we have efficiently found the values for these mesons’ leptonic decay width and branching fraction, matching the experimental findings and theoretical forecasts. The calculated values of semileptonic decays are <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>→</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\"false\">(</mo><mn>2</mn><mo>.</mo><mn>8</mn><mn>9</mn><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\"false\">(</mo><mn>3</mn><mo>.</mo><mn>6</mn><mn>6</mn><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00030.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\"false\">(</mo><mn>1</mn><mo>.</mo><mn>6</mn><mn>5</mn><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00031.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>η</mi></mrow><mrow><mi>′</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\"false\">(</mo><mn>3</mn><mo>.</mo><mn>1</mn><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00032.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>S</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><mi>φ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\"false\">(</mo><mn>2</mn><mo>.</mo><mn>5</mn><mn>9</mn><mn>9</mn><mo>×</mo><msup><mrow><mn>1</mn><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00033.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>S</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><mi>η</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\"false\">(</mo><mn>2</mn><mo>.</mo><mn>3</mn><mn>0</mn><mn>3</mn><mo>×</mo><msup><mrow><mn>1</mn><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>, the proximity of the observed results to experimental and certain theoretical models is evident.</p>","PeriodicalId":18752,"journal":{"name":"Modern Physics Letters A","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state spectra, decay properties of B and D mesons in a relativistic square root potential\",\"authors\":\"S. Behera, S. Panda\",\"doi\":\"10.1142/s021773232450038x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We look at the mass spectra of the <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup></math></span><span></span>, <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span><span></span>, <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow><mrow><mo>±</mo></mrow></msubsup></math></span><span></span>, <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ρ</mi></math></span><span></span>, <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>π</mi></math></span><span></span>, and <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ω</mi></math></span><span></span> mesons using a relativistic square root potential. Before looking at the mass spectra, we have to figure out the model parameters, which are <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>U</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>1</mn><mn>1</mn><mn>5</mn></math></span><span></span><span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>GeV and <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>a</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>8</mn><mn>8</mn><mn>5</mn></math></span><span></span><span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mspace width=\\\".17em\\\"></mspace></math></span><span></span>GeV. The calculated result of <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo>.</mo><mn>8</mn><mn>6</mn><mn>1</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>.</mo><mn>0</mn><mn>1</mn><mn>0</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo>.</mo><mn>9</mn><mn>0</mn><mn>3</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo><mo>±</mo></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>.</mo><mn>1</mn><mn>1</mn><mn>2</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mn>5</mn><mo>.</mo><mn>2</mn><mn>6</mn><mn>4</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>B</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mn>5</mn><mo>.</mo><mn>3</mn><mn>2</mn><mn>7</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mn>5</mn><mo>.</mo><mn>3</mn><mn>4</mn><mn>5</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn><mo>∗</mo></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mn>5</mn><mo>.</mo><mn>4</mn><mn>2</mn><mn>3</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00026.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>±</mo></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mn>5</mn><mo>.</mo><mn>9</mn><mn>5</mn><mn>6</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00027.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>C</mi></mrow><mrow><mo>±</mo><mo>∗</mo></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mn>6</mn><mo>.</mo><mn>2</mn><mn>7</mn><mn>7</mn><mspace width=\\\".17em\\\"></mspace><mstyle><mtext mathvariant=\\\"normal\\\">GeV</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, findings of this study exhibit a notable concurrence with the experimental observations and pertinent theoretical projections. We estimate the decay constant, leptonic decay width, semileptonic decay width, and branching fractions of pseudoscalar and vector mesons, specifically B and D mesons, while keeping the model parameters unchanged. The pseudoscalar decay constants and partial decay widths of “B and D-mesons” reasonably agree with the theoretical predictions, lattice quantum chromodynamics (LQCD) calculations, and experimental data. Moreover, we have efficiently found the values for these mesons’ leptonic decay width and branching fraction, matching the experimental findings and theoretical forecasts. The calculated values of semileptonic decays are <span><math altimg=\\\"eq-00028.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>→</mo><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>.</mo><mn>8</mn><mn>9</mn><mn>2</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00029.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>0</mn></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><mo>.</mo><mn>6</mn><mn>6</mn><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00030.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo>.</mo><mn>6</mn><mn>5</mn><mn>9</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and <span><math altimg=\\\"eq-00031.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>→</mo><msup><mrow><mi>η</mi></mrow><mrow><mi>′</mi></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mn>3</mn><mo>.</mo><mn>1</mn><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00032.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>S</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><mi>φ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>.</mo><mn>5</mn><mn>9</mn><mn>9</mn><mo>×</mo><msup><mrow><mn>1</mn><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00033.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>D</mi></mrow><mrow><mi>S</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>→</mo><mi>η</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msub><mrow><mi>ν</mi></mrow><mrow><mi>e</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mn>2</mn><mo>.</mo><mn>3</mn><mn>0</mn><mn>3</mn><mo>×</mo><msup><mrow><mn>1</mn><mn>0</mn></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, the proximity of the observed results to experimental and certain theoretical models is evident.</p>\",\"PeriodicalId\":18752,\"journal\":{\"name\":\"Modern Physics Letters A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s021773232450038x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s021773232450038x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用相对论平方根势来研究 D±、D±∗、Ds±∗、Ds±、B±、B±∗、Bs0∗、Bs0、Bc±∗、Bc±、ρ、π 和 ω 介子的质谱。在研究质量谱之前,我们必须计算出模型参数,即 U0=-1.115GeV 和 a=0.885GeV。计算结果为 D±(1.861GeV)、D±∗(2.010GeV)、Ds±(1.903GeV)、Ds∗±(2.112GeV)、B±(5.264GeV)、B±∗(5.327GeV)、Bs0(5.345GeV)、Bs0∗(5.423GeV)、BC±(5.956GeV)、BC±∗(6.277GeV),这些研究结果与实验观测和相关理论预测都有显著的一致性。在保持模型参数不变的情况下,我们估算了伪高子和矢量介子(特别是 B 介子和 D 介子)的衰变常数、轻子衰变宽度、半轻子衰变宽度和分支分数。B介子和D介子 "的伪谱衰变常数和部分衰变宽度与理论预言、晶格量子色动力学(LQCD)计算和实验数据相当吻合。此外,我们还有效地找到了这些介子的轻子衰变宽度和分支分数,使实验结果和理论预测相吻合。半轻子衰变的计算值分别为:D0→π-e+νe(2.892×10-3)、D+→π0e+νe(3.669×10-3)、D+→ρ0e+νe(1.659×10-3)和D+→η′e+νe(3.17×10-4)、DS+→φe+νe(2.599×10-2)、DS+→ηe+νe(2.303×10-2),观测结果与实验和某些理论模型的接近是显而易见的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground state spectra, decay properties of B and D mesons in a relativistic square root potential

We look at the mass spectra of the D±, D±, Ds±, Ds±, B±, B±, Bs0, Bs0, Bc±, Bc±, ρ, π, and ω mesons using a relativistic square root potential. Before looking at the mass spectra, we have to figure out the model parameters, which are U0=1.115GeV and a=0.885GeV. The calculated result of D±(1.861GeV), D±(2.010GeV), Ds±(1.903GeV), Ds±(2.112GeV), B±(5.264GeV), B±(5.327GeV), Bs0(5.345GeV), Bs0(5.423GeV), BC±(5.956GeV), BC±(6.277GeV), findings of this study exhibit a notable concurrence with the experimental observations and pertinent theoretical projections. We estimate the decay constant, leptonic decay width, semileptonic decay width, and branching fractions of pseudoscalar and vector mesons, specifically B and D mesons, while keeping the model parameters unchanged. The pseudoscalar decay constants and partial decay widths of “B and D-mesons” reasonably agree with the theoretical predictions, lattice quantum chromodynamics (LQCD) calculations, and experimental data. Moreover, we have efficiently found the values for these mesons’ leptonic decay width and branching fraction, matching the experimental findings and theoretical forecasts. The calculated values of semileptonic decays are D0πe+νe(2.892×103), D+π0e+νe(3.669×103), D+ρ0e+νe(1.659×103) and D+ηe+νe(3.17×104), DS+φe+νe(2.599×102), DS+ηe+νe(2.303×102), the proximity of the observed results to experimental and certain theoretical models is evident.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters A
Modern Physics Letters A 物理-物理:核物理
CiteScore
3.10
自引率
7.10%
发文量
186
审稿时长
3 months
期刊介绍: This letters journal, launched in 1986, consists of research papers covering current research developments in Gravitation, Cosmology, Astrophysics, Nuclear Physics, Particles and Fields, Accelerator physics, and Quantum Information. A Brief Review section has also been initiated with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信