{"title":"网络多边形上双线性项的凸化","authors":"Erfan Khademnia, Danial Davarnia","doi":"10.1287/moor.2023.0001","DOIUrl":null,"url":null,"abstract":"It is well-known that the McCormick relaxation for the bilinear constraint z = xy gives the convex hull over the box domains for x and y. In network applications where the domain of bilinear variables is described by a network polytope, the McCormick relaxation, also referred to as linearization, fails to provide the convex hull and often leads to poor dual bounds. We study the convex hull of the set containing bilinear constraints [Formula: see text] where x<jats:sub>i</jats:sub> represents the arc-flow variable in a network polytope, and y<jats:sub>j</jats:sub> is in a simplex. For the case where the simplex contains a single y variable, we introduce a systematic procedure to obtain the convex hull of the above set in the original space of variables, and show that all facet-defining inequalities of the convex hull can be obtained explicitly through identifying a special tree structure in the underlying network. For the generalization where the simplex contains multiple y variables, we design a constructive procedure to obtain an important class of facet-defining inequalities for the convex hull of the underlying bilinear set that is characterized by a special forest structure in the underlying network. Computational experiments conducted on different applications show the effectiveness of the proposed methods in improving the dual bounds obtained from alternative techniques.Funding: This work was supported by Air Force Office of Scientific Research [Grant FA9550-23-1-0183]; National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation [Grant 2338641].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0001 .","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexification of Bilinear Terms over Network Polytopes\",\"authors\":\"Erfan Khademnia, Danial Davarnia\",\"doi\":\"10.1287/moor.2023.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that the McCormick relaxation for the bilinear constraint z = xy gives the convex hull over the box domains for x and y. In network applications where the domain of bilinear variables is described by a network polytope, the McCormick relaxation, also referred to as linearization, fails to provide the convex hull and often leads to poor dual bounds. We study the convex hull of the set containing bilinear constraints [Formula: see text] where x<jats:sub>i</jats:sub> represents the arc-flow variable in a network polytope, and y<jats:sub>j</jats:sub> is in a simplex. For the case where the simplex contains a single y variable, we introduce a systematic procedure to obtain the convex hull of the above set in the original space of variables, and show that all facet-defining inequalities of the convex hull can be obtained explicitly through identifying a special tree structure in the underlying network. For the generalization where the simplex contains multiple y variables, we design a constructive procedure to obtain an important class of facet-defining inequalities for the convex hull of the underlying bilinear set that is characterized by a special forest structure in the underlying network. Computational experiments conducted on different applications show the effectiveness of the proposed methods in improving the dual bounds obtained from alternative techniques.Funding: This work was supported by Air Force Office of Scientific Research [Grant FA9550-23-1-0183]; National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation [Grant 2338641].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0001 .\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,双线性约束 z = xy 的麦考密克松弛法给出了 x 和 y 的盒域上的凸壳。在网络应用中,双线性变量的域是由网络多面体描述的,麦考密克松弛法(也称为线性化)无法提供凸壳,并且经常导致较差的对偶约束。我们研究的是包含双线性约束的集合的凸环[公式:见正文],其中 xi 代表网络多面体中的弧流变量,yj 位于简单形中。对于单纯形包含单个 y 变量的情况,我们引入了一个系统化的过程,以获得上述集合在原始变量空间中的凸壳,并证明凸壳的所有面定义不等式都可以通过识别底层网络中的特殊树结构显式地获得。对于单纯形包含多个 y 变量的广义情况,我们设计了一种构造过程,以获得一类重要的、以底层网络中的特殊森林结构为特征的底层双线性集合的凸面定义不等式。在不同应用中进行的计算实验表明,所提出的方法能有效改善通过其他技术获得的对偶约束:这项工作得到了空军科学研究办公室[FA9550-23-1-0183 号资助]和美国国家科学基金会民用、机械和制造创新部[2338641 号资助]的支持:在线附录见 https://doi.org/10.1287/moor.2023.0001 。
Convexification of Bilinear Terms over Network Polytopes
It is well-known that the McCormick relaxation for the bilinear constraint z = xy gives the convex hull over the box domains for x and y. In network applications where the domain of bilinear variables is described by a network polytope, the McCormick relaxation, also referred to as linearization, fails to provide the convex hull and often leads to poor dual bounds. We study the convex hull of the set containing bilinear constraints [Formula: see text] where xi represents the arc-flow variable in a network polytope, and yj is in a simplex. For the case where the simplex contains a single y variable, we introduce a systematic procedure to obtain the convex hull of the above set in the original space of variables, and show that all facet-defining inequalities of the convex hull can be obtained explicitly through identifying a special tree structure in the underlying network. For the generalization where the simplex contains multiple y variables, we design a constructive procedure to obtain an important class of facet-defining inequalities for the convex hull of the underlying bilinear set that is characterized by a special forest structure in the underlying network. Computational experiments conducted on different applications show the effectiveness of the proposed methods in improving the dual bounds obtained from alternative techniques.Funding: This work was supported by Air Force Office of Scientific Research [Grant FA9550-23-1-0183]; National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation [Grant 2338641].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2023.0001 .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.