{"title":"论条件义务逻辑中一些弱化的 Transitivity 形式","authors":"Xavier Parent","doi":"10.1007/s10992-024-09748-5","DOIUrl":null,"url":null,"abstract":"<p>This paper examines the logic of conditional obligation, which originates from the works of Hansson, Lewis, and others. Some weakened forms of transitivity of the betterness relation are studied. These are quasi-transitivity, Suzumura consistency, acyclicity and the interval order condition. The first three do not change the logic. The axiomatic system is the same whether or not they are introduced. This holds true under a rule of interpretation in terms of maximality and strong maximality. The interval order condition gives rise to a new axiom. Depending on the rule of interpretation, this one changes. With the rule of maximality, one obtains the principle known as disjunctive rationality. With the rule of strong maximality, one obtains the Spohn axiom (also known as the principle of rational monotony, or Lewis’ axiom CV). A completeness theorem further substantiates these observations. For interval order, this yields the finite model property and decidability of the calculus.</p>","PeriodicalId":51526,"journal":{"name":"JOURNAL OF PHILOSOPHICAL LOGIC","volume":"24 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Weakened Forms of Transitivity in the Logic of Conditional Obligation\",\"authors\":\"Xavier Parent\",\"doi\":\"10.1007/s10992-024-09748-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper examines the logic of conditional obligation, which originates from the works of Hansson, Lewis, and others. Some weakened forms of transitivity of the betterness relation are studied. These are quasi-transitivity, Suzumura consistency, acyclicity and the interval order condition. The first three do not change the logic. The axiomatic system is the same whether or not they are introduced. This holds true under a rule of interpretation in terms of maximality and strong maximality. The interval order condition gives rise to a new axiom. Depending on the rule of interpretation, this one changes. With the rule of maximality, one obtains the principle known as disjunctive rationality. With the rule of strong maximality, one obtains the Spohn axiom (also known as the principle of rational monotony, or Lewis’ axiom CV). A completeness theorem further substantiates these observations. For interval order, this yields the finite model property and decidability of the calculus.</p>\",\"PeriodicalId\":51526,\"journal\":{\"name\":\"JOURNAL OF PHILOSOPHICAL LOGIC\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF PHILOSOPHICAL LOGIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10992-024-09748-5\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF PHILOSOPHICAL LOGIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10992-024-09748-5","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
On Some Weakened Forms of Transitivity in the Logic of Conditional Obligation
This paper examines the logic of conditional obligation, which originates from the works of Hansson, Lewis, and others. Some weakened forms of transitivity of the betterness relation are studied. These are quasi-transitivity, Suzumura consistency, acyclicity and the interval order condition. The first three do not change the logic. The axiomatic system is the same whether or not they are introduced. This holds true under a rule of interpretation in terms of maximality and strong maximality. The interval order condition gives rise to a new axiom. Depending on the rule of interpretation, this one changes. With the rule of maximality, one obtains the principle known as disjunctive rationality. With the rule of strong maximality, one obtains the Spohn axiom (also known as the principle of rational monotony, or Lewis’ axiom CV). A completeness theorem further substantiates these observations. For interval order, this yields the finite model property and decidability of the calculus.
期刊介绍:
The Journal of Philosophical Logic aims to provide a forum for work at the crossroads of philosophy and logic, old and new, with contributions ranging from conceptual to technical. Accordingly, the Journal invites papers in all of the traditional areas of philosophical logic, including but not limited to: various versions of modal, temporal, epistemic, and deontic logic; constructive logics; relevance and other sub-classical logics; many-valued logics; logics of conditionals; quantum logic; decision theory, inductive logic, logics of belief change, and formal epistemology; defeasible and nonmonotonic logics; formal philosophy of language; vagueness; and theories of truth and validity. In addition to publishing papers on philosophical logic in this familiar sense of the term, the Journal also invites papers on extensions of logic to new areas of application, and on the philosophical issues to which these give rise. The Journal places a special emphasis on the applications of philosophical logic in other disciplines, not only in mathematics and the natural sciences but also, for example, in computer science, artificial intelligence, cognitive science, linguistics, jurisprudence, and the social sciences, such as economics, sociology, and political science.