论多个空间变量情况下具有弱扩散性的奇异扰动算子-微分传输方程的考希问题解的渐近性

Pub Date : 2024-04-22 DOI:10.1134/s0965542524030114
A. V. Nesterov
{"title":"论多个空间变量情况下具有弱扩散性的奇异扰动算子-微分传输方程的考希问题解的渐近性","authors":"A. V. Nesterov","doi":"10.1134/s0965542524030114","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A formal asymptotic expansion is constructed for the solution of the Cauchy problem for a singularly perturbed operator differential transport equation with small nonlinearities and weak diffusion in the case of several space variables. Under the conditions imposed on the data of the problem, the leading asymptotic term is described by the multidimensional generalized Burgers–Korteweg–de Vries equation. Under certain conditions, the remainder is estimated with respect to the residual.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Asymptotics of the Solution to the Cauchy Problem for a Singularly Perturbed Operator-Differential Transport Equation with Weak Diffusion in the Case of Several Space Variables\",\"authors\":\"A. V. Nesterov\",\"doi\":\"10.1134/s0965542524030114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A formal asymptotic expansion is constructed for the solution of the Cauchy problem for a singularly perturbed operator differential transport equation with small nonlinearities and weak diffusion in the case of several space variables. Under the conditions imposed on the data of the problem, the leading asymptotic term is described by the multidimensional generalized Burgers–Korteweg–de Vries equation. Under certain conditions, the remainder is estimated with respect to the residual.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524030114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524030114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在多个空间变量的情况下,为具有小非线性和弱扩散性的奇异扰动算子微分输运方程的考希问题解构建了形式化的渐近展开。在对问题数据施加的条件下,前导渐近项由多维广义伯格斯-科特韦格-德弗里斯方程描述。在某些条件下,余数是根据残差估算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Asymptotics of the Solution to the Cauchy Problem for a Singularly Perturbed Operator-Differential Transport Equation with Weak Diffusion in the Case of Several Space Variables

Abstract

A formal asymptotic expansion is constructed for the solution of the Cauchy problem for a singularly perturbed operator differential transport equation with small nonlinearities and weak diffusion in the case of several space variables. Under the conditions imposed on the data of the problem, the leading asymptotic term is described by the multidimensional generalized Burgers–Korteweg–de Vries equation. Under certain conditions, the remainder is estimated with respect to the residual.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信