求解一元二次方程系的精确公式

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED
Yu. G. Evtushenko, A. A. Tret’yakov
{"title":"求解一元二次方程系的精确公式","authors":"Yu. G. Evtushenko, A. A. Tret’yakov","doi":"10.1134/s0965542524030072","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper is devoted to the solution of a nonlinear system of equations <span>\\(F(x{{) = 0}_{n}}\\)</span>, where <span>\\(F\\)</span> is a quadratic mapping acting from <span>\\({{\\mathbb{R}}^{n}}\\)</span> to <span>\\({{\\mathbb{R}}^{n}}\\)</span>. The derivative <span>\\(F{\\kern 1pt} '\\)</span> is assumed to be degenerate at the solution point, which is a major characteristic property of nonlinearity of the mapping. Based on constructions of the <i>p</i>-regularity theory, a 2-factor method is proposed for solving the system of equations, which converges at a quadratic rate. Moreover, an exact formula is obtained for solving this quadratic system of equations in the case of a 2-regular mapping <span>\\(F(x)\\)</span>.</p>","PeriodicalId":55230,"journal":{"name":"Computational Mathematics and Mathematical Physics","volume":"524 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact Formula for Solving a Degenerate System of Quadratic Equations\",\"authors\":\"Yu. G. Evtushenko, A. A. Tret’yakov\",\"doi\":\"10.1134/s0965542524030072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper is devoted to the solution of a nonlinear system of equations <span>\\\\(F(x{{) = 0}_{n}}\\\\)</span>, where <span>\\\\(F\\\\)</span> is a quadratic mapping acting from <span>\\\\({{\\\\mathbb{R}}^{n}}\\\\)</span> to <span>\\\\({{\\\\mathbb{R}}^{n}}\\\\)</span>. The derivative <span>\\\\(F{\\\\kern 1pt} '\\\\)</span> is assumed to be degenerate at the solution point, which is a major characteristic property of nonlinearity of the mapping. Based on constructions of the <i>p</i>-regularity theory, a 2-factor method is proposed for solving the system of equations, which converges at a quadratic rate. Moreover, an exact formula is obtained for solving this quadratic system of equations in the case of a 2-regular mapping <span>\\\\(F(x)\\\\)</span>.</p>\",\"PeriodicalId\":55230,\"journal\":{\"name\":\"Computational Mathematics and Mathematical Physics\",\"volume\":\"524 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0965542524030072\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0965542524030072","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文致力于非线性方程组 \(F(x{{) = 0}_{n}}\ 的求解,其中 \(F\) 是作用于 \({{\mathbb{R}}^{n}}\) 到 \({{\mathbb{R}}^{n}}\) 的二次映射。)假定导数 \(F{kern 1pt} '\) 在解点处是退化的,这是映射非线性的一个主要特征属性。基于 p-regularity 理论的构造,提出了一种求解方程组的 2 因子方法,该方法以二次方速率收敛。此外,在 2-regular 映射 \(F(x)\)的情况下,还得到了求解该二次方程组的精确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Formula for Solving a Degenerate System of Quadratic Equations

Abstract

The paper is devoted to the solution of a nonlinear system of equations \(F(x{{) = 0}_{n}}\), where \(F\) is a quadratic mapping acting from \({{\mathbb{R}}^{n}}\) to \({{\mathbb{R}}^{n}}\). The derivative \(F{\kern 1pt} '\) is assumed to be degenerate at the solution point, which is a major characteristic property of nonlinearity of the mapping. Based on constructions of the p-regularity theory, a 2-factor method is proposed for solving the system of equations, which converges at a quadratic rate. Moreover, an exact formula is obtained for solving this quadratic system of equations in the case of a 2-regular mapping \(F(x)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mathematics and Mathematical Physics
Computational Mathematics and Mathematical Physics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.50
自引率
14.30%
发文量
125
审稿时长
4-8 weeks
期刊介绍: Computational Mathematics and Mathematical Physics is a monthly journal published in collaboration with the Russian Academy of Sciences. The journal includes reviews and original papers on computational mathematics, computational methods of mathematical physics, informatics, and other mathematical sciences. The journal welcomes reviews and original articles from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信