预测激进基金下一个目标的可解释机器学习模型

Minwu Kim
{"title":"预测激进基金下一个目标的可解释机器学习模型","authors":"Minwu Kim","doi":"arxiv-2404.16169","DOIUrl":null,"url":null,"abstract":"This work develops a predictive model to identify potential targets of\nactivist investment funds, which strategically acquire significant corporate\nstakes to drive operational and strategic improvements and enhance shareholder\nvalue. Predicting these targets is crucial for companies to mitigate\nintervention risks, for activists to select optimal targets, and for investors\nto capitalize on associated stock price gains. Our analysis utilizes data from\nthe Russell 3000 index from 2016 to 2022. We tested 123 variations of models\nusing different data imputation, oversampling, and machine learning methods,\nachieving a top AUC-ROC of 0.782. This demonstrates the model's effectiveness\nin identifying likely targets of activist funds. We applied the Shapley value\nmethod to determine the most influential factors in a company's susceptibility\nto activist investment. This interpretative approach provides clear insights\ninto the driving forces behind activist targeting. Our model offers\nstakeholders a strategic tool for proactive corporate governance and investment\nstrategy, enhancing understanding of the dynamics of activist investing.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable Machine Learning Models for Predicting the Next Targets of Activist Funds\",\"authors\":\"Minwu Kim\",\"doi\":\"arxiv-2404.16169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work develops a predictive model to identify potential targets of\\nactivist investment funds, which strategically acquire significant corporate\\nstakes to drive operational and strategic improvements and enhance shareholder\\nvalue. Predicting these targets is crucial for companies to mitigate\\nintervention risks, for activists to select optimal targets, and for investors\\nto capitalize on associated stock price gains. Our analysis utilizes data from\\nthe Russell 3000 index from 2016 to 2022. We tested 123 variations of models\\nusing different data imputation, oversampling, and machine learning methods,\\nachieving a top AUC-ROC of 0.782. This demonstrates the model's effectiveness\\nin identifying likely targets of activist funds. We applied the Shapley value\\nmethod to determine the most influential factors in a company's susceptibility\\nto activist investment. This interpretative approach provides clear insights\\ninto the driving forces behind activist targeting. Our model offers\\nstakeholders a strategic tool for proactive corporate governance and investment\\nstrategy, enhancing understanding of the dynamics of activist investing.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.16169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.16169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究开发了一个预测模型,用于识别激进主义投资基金的潜在目标,这些基金战略性地收购重要的公司股权,以推动运营和战略改进,提高股东价值。预测这些目标对于公司降低干预风险、激进主义者选择最佳目标以及投资者利用相关股价收益都至关重要。我们的分析利用了 2016 年至 2022 年罗素 3000 指数的数据。我们使用不同的数据估算、超采样和机器学习方法测试了 123 种不同的模型,最高 AUC-ROC 为 0.782。这表明该模型能有效识别激进基金的可能目标。我们应用 Shapley 估值法确定了公司易受激进投资影响的最大因素。这种解释性方法可以让我们清楚地了解激进分子瞄准目标背后的驱动力。我们的模型为利益相关者提供了积极主动的公司治理和投资战略工具,增强了对激进投资动态的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretable Machine Learning Models for Predicting the Next Targets of Activist Funds
This work develops a predictive model to identify potential targets of activist investment funds, which strategically acquire significant corporate stakes to drive operational and strategic improvements and enhance shareholder value. Predicting these targets is crucial for companies to mitigate intervention risks, for activists to select optimal targets, and for investors to capitalize on associated stock price gains. Our analysis utilizes data from the Russell 3000 index from 2016 to 2022. We tested 123 variations of models using different data imputation, oversampling, and machine learning methods, achieving a top AUC-ROC of 0.782. This demonstrates the model's effectiveness in identifying likely targets of activist funds. We applied the Shapley value method to determine the most influential factors in a company's susceptibility to activist investment. This interpretative approach provides clear insights into the driving forces behind activist targeting. Our model offers stakeholders a strategic tool for proactive corporate governance and investment strategy, enhancing understanding of the dynamics of activist investing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信